summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--blastem.c2
-rw-r--r--ym2612.c473
-rw-r--r--ym2612.h60
3 files changed, 441 insertions, 94 deletions
diff --git a/blastem.c b/blastem.c
index e634dc6..e3f5744 100644
--- a/blastem.c
+++ b/blastem.c
@@ -198,7 +198,7 @@ m68k_context * sync_components(m68k_context * context, uint32_t address)
sync_z80(z_context, mclks);
if (mclks >= mclks_per_frame) {
ym_run(gen->ym, context->current_cycle);
- gen->ym->current_cycle -= mclks_per_frame/MCLKS_PER_68K;
+ gen->ym->current_cycle -= ((mclks_per_frame/MCLKS_PER_68K) / 6) * 6;
//printf("reached frame end | 68K Cycles: %d, MCLK Cycles: %d\n", context->current_cycle, mclks);
vdp_run_context(v_context, mclks_per_frame);
psg_run(gen->psg, mclks/MCLKS_PER_PSG);
diff --git a/ym2612.c b/ym2612.c
index 6f0fe9b..73dbc7e 100644
--- a/ym2612.c
+++ b/ym2612.c
@@ -6,22 +6,29 @@
#define BUSY_CYCLES 17
#define TIMERA_UPDATE_PERIOD 144
-#define REG_TIMERA_HIGH 0x03 // 0x24
-#define REG_TIMERA_LOW 0x04 // 0x25
-#define REG_TIMERB 0x05 // 0x26
-#define REG_TIME_CTRL 0x06 // 0x27
-#define REG_DAC 0x0A // 0x2A
-#define REG_DAC_ENABLE 0x0B // 0x2B
-
-//offset to add to "shared" regs when looking for them in Part I
-#define REG_SHARED 0x10
-
+enum {
+ REG_TIMERA_HIGH = 0x24,
+ REG_TIMERA_LOW,
+ REG_TIMERB,
+ REG_TIME_CTRL,
+ REG_KEY_ONOFF,
+ REG_DAC = 0x2A,
+ REG_DAC_ENABLE,
-#define REG_ALG_FEEDBACK (0xB0-0x30)
-#define REG_ATTACK_KS (0x50-0x30)
-#define REG_DECAY_AM (0x60-0x30)
-#define REG_SUSTAIN_RATE (0x70-0x30)
+ REG_DETUNE_MULT = 0x30,
+ REG_TOTAL_LEVEL = 0x40,
+ REG_ATTACK_KS = 0x50,
+ REG_DECAY_AM = 0x60,
+ REG_SUSTAIN_RATE = 0x70,
+ REG_S_LVL_R_RATE = 0x80,
+ REG_FNUM_LOW = 0xA0,
+ REG_BLOCK_FNUM_H = 0xA4,
+ REG_FNUM_LOW_CH3 = 0xA8,
+ REG_BLOCK_FN_CH3 = 0xAC,
+ REG_ALG_FEEDBACK = 0xB0,
+ REG_LR_AMS_PMS = 0xB4
+};
#define BIT_TIMERA_ENABLE 0x1
#define BIT_TIMERB_ENABLE 0x2
@@ -52,6 +59,23 @@ uint16_t sine_table[SINE_TABLE_SIZE];
#define POW_TABLE_SIZE (1 << 13)
uint16_t pow_table[POW_TABLE_SIZE];
+uint16_t rate_table_base[] = {
+ //main portion
+ 0,1,0,1,0,1,0,1,
+ 0,1,0,1,1,1,0,1,
+ 0,1,1,1,0,1,1,1,
+ 0,1,1,1,1,1,1,1,
+ //top end
+ 1,1,1,1,1,1,1,1,
+ 1,1,1,2,1,1,1,2,
+ 1,2,1,2,1,2,1,2,
+ 1,2,2,2,1,2,2,2,
+};
+
+uint16_t rate_table[64];
+
+#define MAX_ENVELOPE 0xFFC
+
uint16_t round_fixed_point(double value, int dec_bits)
{
@@ -61,6 +85,10 @@ uint16_t round_fixed_point(double value, int dec_bits)
void ym_init(ym2612_context * context)
{
memset(context, 0, sizeof(*context));
+ for (int i = 0; i < NUM_OPERATORS; i++) {
+ context->operators[i].envelope = MAX_ENVELOPE;
+ context->operators[i].env_phase = PHASE_RELEASE;
+ }
if (!did_tbl_init) {
//populate sine table
for (int32_t i = 0; i < 512; i++) {
@@ -81,33 +109,52 @@ void ym_init(ym2612_context * context)
}
pow_table[i] = tmp;
}
+ //populate envelope generator rate table, from small base table
+ for (int rate = 0; rate < 64; rate++) {
+ for (int cycle = 0; cycle < 7; cycle++) {
+ uint16_t value;
+ if (rate < 3) {
+ value = 0;
+ } else if (value >= 60) {
+ value = 8;
+ } else if (value < 8) {
+ value = rate_table_base[((rate & 6) == 6 ? 16 : 8) + cycle];
+ } else if (value < 48) {
+ value = rate_table_base[(rate & 0x3) * 8 + cycle];
+ } else {
+ value = rate_table_base[32 + (rate & 0x3) * 8 + cycle] << (rate >> 2);
+ }
+ }
+ }
}
}
void ym_run(ym2612_context * context, uint32_t to_cycle)
{
+ //printf("Running YM2612 from cycle %d to cycle %d\n", context->current_cycle, to_cycle);
+ //TODO: Fix channel update order OR remap channels in register write
for (; context->current_cycle < to_cycle; context->current_cycle += 6) {
uint32_t update_cyc = context->current_cycle % 144;
//Update timers at beginning of 144 cycle period
- if (!update_cyc && context->part1_regs[REG_TIME_CTRL] & BIT_TIMERA_ENABLE) {
+ if (!update_cyc && context->timer_control & BIT_TIMERA_ENABLE) {
if (context->timer_a) {
context->timer_a--;
} else {
- if (context->part1_regs[REG_TIME_CTRL] & BIT_TIMERA_OVEREN) {
+ if (context->timer_control & BIT_TIMERA_OVEREN) {
context->status |= BIT_STATUS_TIMERA;
}
- context->timer_a = (context->part1_regs[REG_TIMERA_HIGH] << 2) | (context->part1_regs[REG_TIMERA_LOW] & 0x3);
+ context->timer_a = context->timer_a_load;
}
- if (context->part1_regs[REG_TIME_CTRL] & BIT_TIMERB_ENABLE) {
+ if (context->timer_control & BIT_TIMERB_ENABLE) {
uint32_t b_cyc = (context->current_cycle / 144) % 16;
if (!b_cyc) {
if (context->timer_b) {
context->timer_b--;
} else {
- if (context->part1_regs[REG_TIME_CTRL] & BIT_TIMERB_OVEREN) {
+ if (context->timer_control & BIT_TIMERB_OVEREN) {
context->status |= BIT_STATUS_TIMERB;
}
- context->timer_b = context->part1_regs[REG_TIMERB];
+ context->timer_b = context->timer_b_load;
}
}
}
@@ -117,100 +164,376 @@ void ym_run(ym2612_context * context, uint32_t to_cycle)
uint32_t env_cyc = context->current_cycle / 72;
uint32_t op = env_cyc % 24;
env_cyc /= 24;
+ ym_operator * operator = context->operators + op;
+ ym_channel * channel = context->channels + op/4;
uint8_t rate;
- switch(context->env_phase[op])
- {
- case PHASE_ATTACK:
- rate = (op < 3 ? context->part1_regs[REG_SHARED + REG_ATTACK_KS + op] : context->part2_regs[REG_ATTACK_KS + op - 3]) & 0x1F;
- break;
- case PHASE_DECAY:
- rate = (op < 3 ? context->part1_regs[REG_SHARED + REG_DECAY_AM + op] : context->part2_regs[REG_DECAY_AM + op - 3]) & 0x1F;
- break;
- case PHASE_SUSTAIN:
- rate = (op < 3 ? context->part1_regs[REG_SHARED + REG_SUSTAIN_RATE + op] : context->part2_regs[REG_SUSTAIN_RATE + op - 3]) & 0x1F;
- break;
- case PHASE_RELEASE:
- rate = (op < 3 ? context->part1_regs[REG_SHARED + REG_DECAY_AM + op] : context->part2_regs[REG_DECAY_AM + op - 3]) << 1 & 0x1E | 1;
- break;
+ for(;;) {
+ rate = operator->rates[operator->env_phase];
+ if (rate) {
+ uint8_t ks = channel->keycode >> operator->key_scaling;;
+ rate = rate*2 + ks;
+ if (rate > 63) {
+ rate = 63;
+ }
+ }
+ //Deal with "infinite" rates
+ //It's possible this should be handled in key-on as well
+ if (rate == 63 && operator->env_phase < PHASE_SUSTAIN) {
+ if (operator->env_phase == PHASE_ATTACK) {
+ operator->env_phase = PHASE_DECAY;
+ operator->envelope = operator->total_level;
+ } else {
+ operator->env_phase = PHASE_SUSTAIN;
+ operator->envelope = operator->sustain_level;
+ }
+ } else {
+ break;
+ }
}
- if (rate) {
- //apply key scaling
- uint8_t shift = (op < 3 ?
- context->part1_regs[REG_SHARED + REG_ATTACK_KS + op] :
- context->part2_regs[REG_ATTACK_KS + op - 3]
- ) >> 6;
- uint8_t ks = context->keycode[op] >> (3 - shift);
- rate = rate*2 + ks;
- if (rate > 63) {
- rate = 63;
+ uint32_t cycle_shift = rate < 0x30 ? ((0x2F - rate) >> 2) : 0;
+ if (!(env_cyc & ((1 << cycle_shift) - 1))) {
+ uint32_t update_cycle = env_cyc >> cycle_shift & 0x7;
+ //envelope value is 10-bits, but it will be used as a 4.8 value
+ uint16_t envelope_inc = rate_table[rate * 8 + update_cycle] << 2;
+ if (operator->env_phase == PHASE_ATTACK) {
+ //this can probably be optimized to a single shift rather than a multiply + shift
+ operator->envelope += (~operator->envelope * envelope_inc) >> 4;
+ operator->envelope &= MAX_ENVELOPE;
+ if (operator->envelope <= operator->total_level) {
+ operator->envelope = operator->total_level;
+ operator->env_phase = PHASE_DECAY;
+ }
+ } else {
+ operator->envelope += envelope_inc;
+ //clamp to max attenuation value
+ if (operator->envelope > MAX_ENVELOPE) {
+ operator->envelope = MAX_ENVELOPE;
+ }
+ if (operator->env_phase == PHASE_DECAY && operator->envelope >= operator->sustain_level) {
+ operator->envelope = operator->sustain_level;
+ operator->env_phase = PHASE_SUSTAIN;
+ }
}
+
+
}
}
+
//Update Phase Generator
uint32_t channel = update_cyc / 24;
- if (channel != 6 || !(context->part1_regs[REG_DAC_ENABLE] & 0x80)) {
+ if (channel != 5 || !context->dac_enable) {
uint32_t op = (update_cyc) / 6;
- uint8_t alg;
- if (op < 3) {
- alg = context->part1_regs[REG_SHARED + REG_ALG_FEEDBACK + op] & 0x7;
- } else {
- alg = context->part2_regs[REG_ALG_FEEDBACK + op-3] & 0x7;
+ //printf("updating operator %d of channel %d\n", op, channel);
+ ym_operator * operator = context->operators + op;
+ ym_channel * chan = context->channels + channel;
+ //TODO: Modulate phase by LFO if necessary
+ operator->phase_counter += operator->phase_inc;
+ uint16_t phase = operator->phase_counter >> 10 & 0x3FF;
+ switch (op % 4)
+ {
+ case 0://Operator 1
+ //TODO: Feedback
+ break;
+ case 1://Operator 3
+ switch(chan->algorithm)
+ {
+ case 0:
+ case 2:
+ //modulate by operator 2
+ phase += context->operators[op+1].output >> 4;
+ break;
+ case 1:
+ //modulate by operator 1+2
+ phase += (context->operators[op-1].output + context->operators[op+1].output) >> 4;
+ break;
+ case 5:
+ //modulate by operator 1
+ phase += context->operators[op-1].output >> 4;
+ }
+ break;
+ case 2://Operator 2
+ if (chan->algorithm != 1 && chan->algorithm != 2 || chan->algorithm != 7) {
+ //modulate by Operator 1
+ phase += context->operators[op-2].output >> 4;
+ }
+ break;
+ case 3://Operator 4
+ switch(chan->algorithm)
+ {
+ case 0:
+ case 1:
+ case 4:
+ //modulate by operator 3
+ phase += context->operators[op-2].output >> 4;
+ break;
+ case 2:
+ //modulate by operator 1+3
+ phase += (context->operators[op-3].output + context->operators[op-2].output) >> 4;
+ break;
+ case 3:
+ //modulate by operator 2+3
+ phase += (context->operators[op-1].output + context->operators[op-2].output) >> 4;
+ break;
+ case 5:
+ //modulate by operator 1
+ phase += context->operators[op-3].output >> 4;
+ break;
+ }
+ break;
}
- context->phase_counter[op] += context->phase_inc[op];
- uint16_t phase = context->phase_counter[op] >> 10 & 0x3FF;
- //TODO: Modulate phase if necessary
- uint16_t output = pow_table[sine_table[phase & 0x1FF] + context->envelope[op]];
+ //printf("sine_table[%X] + %X = %X, sizeof(pow_table)/sizeof(*pow_table) = %X\n", phase & 0x1FF, operator->envelope, sine_table[phase & 0x1FF] + operator->envelope, sizeof(pow_table)/ sizeof(*pow_table));
+ uint16_t output = pow_table[sine_table[phase & 0x1FF] + operator->envelope];
if (phase & 0x200) {
output = -output;
}
- context->op_out[op] = output;
+ operator->output = output;
//Update the channel output if we've updated all operators
if (op % 4 == 3) {
- if (alg < 4) {
- context->channel_out[channel] = context->op_out[channel * 4 + 3];
- } else if(alg == 4) {
- context->channel_out[channel] = context->op_out[channel * 4 + 3] + context->op_out[channel * 4 + 1];
+ if (chan->algorithm < 4) {
+ chan->output = operator->output;
+ } else if(chan->algorithm == 4) {
+ chan->output = operator->output + context->operators[channel * 4 + 1].output;
} else {
output = 0;
- for (uint32_t op = ((alg == 7) ? 0 : 1) + channel*4; op < (channel+1)*4; op++) {
- output += context->op_out[op];
+ for (uint32_t op = ((chan->algorithm == 7) ? 0 : 1) + channel*4; op < (channel+1)*4; op++) {
+ output += context->operators[op].output;
}
- context->channel_out[channel] = output;
+ chan->output = output;
}
}
+ //puts("operator update done");
}
-
}
if (context->current_cycle >= context->write_cycle + BUSY_CYCLES) {
context->status &= 0x7F;
}
+ //printf("Done running YM2612 at cycle %d\n", context->current_cycle, to_cycle);
}
void ym_address_write_part1(ym2612_context * context, uint8_t address)
{
- if (address >= 0x21 && address < 0xB7) {
- context->selected_reg = context->part1_regs + address - 0x21;
- } else {
- context->selected_reg = NULL;
- }
+ context->selected_reg = address;
+ context->selected_part = 0;
}
void ym_address_write_part2(ym2612_context * context, uint8_t address)
{
- if (address >= 0x30 && address < 0xB7) {
- context->selected_reg = context->part1_regs + address - 0x30;
+ context->selected_reg = address;
+ context->selected_part = 1;
+}
+
+uint8_t fnum_to_keycode[] = {
+ //F11 = 0
+ 0,0,0,0,0,0,0,1,
+ //F11 = 1
+ 2,3,3,3,3,3,3,3
+};
+
+//table courtesy of Nemesis
+uint32_t detune_table[][4] = {
+ {0, 0, 1, 2}, //0 (0x00)
+ {0, 0, 1, 2}, //1 (0x01)
+ {0, 0, 1, 2}, //2 (0x02)
+ {0, 0, 1, 2}, //3 (0x03)
+ {0, 1, 2, 2}, //4 (0x04)
+ {0, 1, 2, 3}, //5 (0x05)
+ {0, 1, 2, 3}, //6 (0x06)
+ {0, 1, 2, 3}, //7 (0x07)
+ {0, 1, 2, 4}, //8 (0x08)
+ {0, 1, 3, 4}, //9 (0x09)
+ {0, 1, 3, 4}, //10 (0x0A)
+ {0, 1, 3, 5}, //11 (0x0B)
+ {0, 2, 4, 5}, //12 (0x0C)
+ {0, 2, 4, 6}, //13 (0x0D)
+ {0, 2, 4, 6}, //14 (0x0E)
+ {0, 2, 5, 7}, //15 (0x0F)
+ {0, 2, 5, 8}, //16 (0x10)
+ {0, 3, 6, 8}, //17 (0x11)
+ {0, 3, 6, 9}, //18 (0x12)
+ {0, 3, 7,10}, //19 (0x13)
+ {0, 4, 8,11}, //20 (0x14)
+ {0, 4, 8,12}, //21 (0x15)
+ {0, 4, 9,13}, //22 (0x16)
+ {0, 5,10,14}, //23 (0x17)
+ {0, 5,11,16}, //24 (0x18)
+ {0, 6,12,17}, //25 (0x19)
+ {0, 6,13,19}, //26 (0x1A)
+ {0, 7,14,20}, //27 (0x1B)
+ {0, 8,16,22}, //28 (0x1C)
+ {0, 8,16,22}, //29 (0x1D)
+ {0, 8,16,22}, //30 (0x1E)
+ {0, 8,16,22}
+}; //31 (0x1F)
+
+void ym_update_phase_inc(ym2612_context * context, ym_operator * operator, uint32_t op)
+{
+ uint32_t chan_num = op / 4;
+ //printf("ym_update_phase_inc | channel: %d, op: %d\n", chan_num, op);
+ //base frequency
+ ym_channel * channel = context->channels + chan_num;
+ uint32_t inc = channel->fnum;
+ if (!channel->block) {
+ inc >> 1;
} else {
- context->selected_reg = NULL;
+ inc << (channel->block-1);
+ }
+ //detune
+ uint32_t detune = detune_table[channel->keycode][operator->detune & 0x3];
+ if (operator->detune & 0x40) {
+ inc -= detune;
+ //this can underflow, mask to 17-bit result
+ inc &= 0x1FFFF;
+ } else {
+ inc += detune;
+ }
+ //multiple
+ if (operator->multiple) {
+ inc *= operator->multiple;
+ } else {
+ //0.5
+ inc >>= 1;
}
}
void ym_data_write(ym2612_context * context, uint8_t value)
{
- if (context->selected_reg && !(context->status & 0x80)) {
- *context->selected_reg = value;
- context->write_cycle = context->current_cycle;
- context->selected_reg = NULL;//TODO: Verify this
+ if (context->selected_reg < 0x21 || context->selected_reg > 0xB6 || (context->selected_reg < 0x30 && context->selected_part)) {
+ return;
+ }
+ //printf("write to reg %X in part %d\n", context->selected_reg, context->selected_part+1);
+ if (context->selected_reg < 0x30) {
+ //Shared regs
+ switch (context->selected_reg)
+ {
+ //TODO: Test reg and LFO
+ case REG_TIMERA_HIGH:
+ context->timer_a_load &= 0x3;
+ context->timer_a_load |= value << 2;
+ break;
+ case REG_TIMERA_LOW:
+ context->timer_a_load &= 0xFFFC;
+ context->timer_a_load |= value & 0x3;
+ break;
+ case REG_TIMERB:
+ context->timer_b_load = value;
+ break;
+ case REG_TIME_CTRL:
+ context->timer_control = value;
+ break;
+ case REG_KEY_ONOFF: {
+ uint8_t channel = value & 0x7;
+ if (channel < NUM_CHANNELS) {
+ for (uint8_t op = channel * 4, bit = 0x10; op < (channel + 1) * 4; op++, bit <<= 1) {
+ if (value & bit) {
+ //printf("Key On for operator %d in channel %d\n", op, channel);
+ context->operators[op].phase_counter = 0;
+ context->operators[op].env_phase = PHASE_ATTACK;
+ context->operators[op].envelope = MAX_ENVELOPE;
+ } else {
+ //printf("Key Off for operator %d in channel %d\n", op, channel);
+ context->operators[op].env_phase = PHASE_RELEASE;
+ }
+ }
+ }
+ break;
+ }
+ case REG_DAC:
+ if (context->dac_enable) {
+ context->channels[5].output = (((int16_t)value) - 0x80) << 6;
+ }
+ break;
+ case REG_DAC_ENABLE:
+ context->dac_enable = value & 0x80;
+ break;
+ }
+ } else if (context->selected_reg < 0xA0) {
+ //part
+ uint8_t op = context->selected_part ? (NUM_OPERATORS/2) : 0;
+ //channel in part
+ if ((context->selected_reg & 0x3) != 0x3) {
+ op += 4 * (context->selected_reg & 0x3);
+ //operator in channel
+ switch (context->selected_reg & 0xC)
+ {
+ case 0:
+ break;
+ case 4:
+ op += 2;
+ break;
+ case 8:
+ op += 1;
+ break;
+ case 0xC:
+ op += 3;
+ break;
+ }
+ //printf("write targets operator %d (%d of channel %d)\n", op, op % 4, op / 4);
+ ym_operator * operator = context->operators + op;
+ switch (context->selected_reg & 0xF0)
+ {
+ case REG_DETUNE_MULT:
+ operator->detune = value >> 4 & 0x7;
+ operator->multiple = value & 0xF;
+ ym_update_phase_inc(context, operator, op);
+ break;
+ case REG_TOTAL_LEVEL:
+ operator->total_level = (value & 0x7F) << 5;
+ break;
+ case REG_ATTACK_KS:
+ operator->key_scaling = value >> 6;
+ operator->rates[PHASE_ATTACK] = value & 0x1F;
+ break;
+ case REG_DECAY_AM:
+ //TODO: AM flag for LFO
+ operator->rates[PHASE_DECAY] = value & 0x1F;
+ break;
+ case REG_SUSTAIN_RATE:
+ operator->rates[PHASE_SUSTAIN] = value & 0x1F;
+ break;
+ case REG_S_LVL_R_RATE:
+ operator->rates[PHASE_RELEASE] = (value & 0xF) << 1 | 1;
+ operator->sustain_level = value & 0xF0 << 4;
+ break;
+ }
+ }
+ } else {
+ uint8_t channel = context->selected_reg & 0x3;
+ if (channel != 3) {
+ if (context->selected_part) {
+ channel += 3;
+ }
+ //printf("write targets channel %d\n", channel);
+ switch (context->selected_reg & 0xFC)
+ {
+ case REG_FNUM_LOW:
+ context->channels[channel].block = context->channels[channel].block_fnum_latch >> 3 & 0x7;
+ context->channels[channel].fnum = (context->channels[channel].block_fnum_latch & 0x7) << 8 | value;
+ context->channels[channel].keycode = context->channels[channel].block << 2 | fnum_to_keycode[context->channels[channel].fnum >> 7];
+ ym_update_phase_inc(context, context->operators + channel*4, channel*4);
+ ym_update_phase_inc(context, context->operators + channel*4+1, channel*4+1);
+ ym_update_phase_inc(context, context->operators + channel*4+2, channel*4+2);
+ ym_update_phase_inc(context, context->operators + channel*4+3, channel*4+3);
+ break;
+ case REG_BLOCK_FNUM_H:{
+ context->channels[channel].block_fnum_latch = value;
+ break;
+ }
+ //TODO: Channel 3 special/CSM modes
+ case REG_ALG_FEEDBACK:
+ context->channels[channel].algorithm = value & 0x7;
+ context->channels[channel].feedback = value >> 3 & 0x7;
+ break;
+ case REG_LR_AMS_PMS:
+ context->channels[channel].pms = value & 0x7;
+ context->channels[channel].ams = value >> 4 & 0x3;
+ context->channels[channel].lr = value & 0xC0;
+ break;
+ }
+ }
}
+
+ context->write_cycle = context->current_cycle;
+ context->selected_reg = 0;//TODO: Verify this
}
uint8_t ym_read_status(ym2612_context * context)
diff --git a/ym2612.h b/ym2612.h
index f66a526..272322f 100644
--- a/ym2612.h
+++ b/ym2612.h
@@ -3,27 +3,51 @@
#include <stdint.h>
-#define NUM_SHARED_REGS (0x30-0x21)
#define NUM_PART_REGS (0xB7-0x30)
-#define NUM_OPERATORS (4*6)
+#define NUM_CHANNELS 6
+#define NUM_OPERATORS (4*NUM_CHANNELS)
typedef struct {
- uint32_t current_cycle;
- uint32_t write_cycle;
- uint8_t *selected_reg;
- uint32_t phase_inc[NUM_OPERATORS];
- uint32_t phase_counter[NUM_OPERATORS];
- uint16_t envelope[NUM_OPERATORS];
- uint16_t op_out[NUM_OPERATORS];
- uint16_t channel_out[6];
- uint16_t timer_a;
- uint8_t env_phase[NUM_OPERATORS];
- uint8_t keycode[NUM_OPERATORS];
- uint8_t timer_b;
- uint8_t reg_num;
- uint8_t status;
- uint8_t part1_regs[NUM_SHARED_REGS+NUM_PART_REGS];
- uint8_t part2_regs[NUM_PART_REGS];
+ uint32_t phase_inc;
+ uint32_t phase_counter;
+ uint16_t envelope;
+ uint16_t output;
+ uint16_t total_level;
+ uint16_t sustain_level;
+ uint8_t rates[4];
+ uint8_t key_scaling;
+ uint8_t multiple;
+ uint8_t detune;
+ uint8_t env_phase;
+} ym_operator;
+
+typedef struct {
+ uint16_t fnum;
+ int16_t output;
+ uint8_t block_fnum_latch;
+ uint8_t block;
+ uint8_t keycode;
+ uint8_t algorithm;
+ uint8_t feedback;
+ uint8_t ams;
+ uint8_t pms;
+ uint8_t lr;
+} ym_channel;
+
+typedef struct {
+ uint32_t current_cycle;
+ uint32_t write_cycle;
+ ym_operator operators[NUM_OPERATORS];
+ ym_channel channels[NUM_CHANNELS];
+ uint16_t timer_a;
+ uint16_t timer_a_load;
+ uint8_t timer_b;
+ uint8_t timer_b_load;
+ uint8_t timer_control;
+ uint8_t dac_enable;
+ uint8_t status;
+ uint8_t selected_reg;
+ uint8_t selected_part;
} ym2612_context;
void ym_init(ym2612_context * context);