1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
/*
Copyright 2014 Michael Pavone
This file is part of BlastEm.
BlastEm is free software distributed under the terms of the GNU General Public License version 3 or greater. See COPYING for full license text.
*/
#include "m68k_core.h"
#include "m68k_internal.h"
#include "68kinst.h"
#include "backend.h"
#include "gen.h"
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
int8_t native_reg(m68k_op_info * op, m68k_options * opts)
{
if (op->addr_mode == MODE_REG) {
return opts->dregs[op->params.regs.pri];
}
if (op->addr_mode == MODE_AREG) {
return opts->aregs[op->params.regs.pri];
}
return -1;
}
//must be called with an m68k_op_info that uses a register
size_t reg_offset(m68k_op_info *op)
{
if (op->addr_mode == MODE_REG) {
return offsetof(m68k_context, dregs) + sizeof(uint32_t) * op->params.regs.pri;
}
return offsetof(m68k_context, aregs) + sizeof(uint32_t) * op->params.regs.pri;
}
void print_regs_exit(m68k_context * context)
{
printf("XNZVC\n%d%d%d%d%d\n", context->flags[0], context->flags[1], context->flags[2], context->flags[3], context->flags[4]);
for (int i = 0; i < 8; i++) {
printf("d%d: %X\n", i, context->dregs[i]);
}
for (int i = 0; i < 8; i++) {
printf("a%d: %X\n", i, context->aregs[i]);
}
exit(0);
}
void m68k_read_size(m68k_options *opts, uint8_t size)
{
switch (size)
{
case OPSIZE_BYTE:
call(&opts->gen.code, opts->read_8);
break;
case OPSIZE_WORD:
call(&opts->gen.code, opts->read_16);
break;
case OPSIZE_LONG:
call(&opts->gen.code, opts->read_32);
break;
}
}
void m68k_write_size(m68k_options *opts, uint8_t size)
{
switch (size)
{
case OPSIZE_BYTE:
call(&opts->gen.code, opts->write_8);
break;
case OPSIZE_WORD:
call(&opts->gen.code, opts->write_16);
break;
case OPSIZE_LONG:
call(&opts->gen.code, opts->write_32_highfirst);
break;
}
}
code_ptr get_native_address(native_map_slot * native_code_map, uint32_t address)
{
address &= 0xFFFFFF;
address /= 2;
uint32_t chunk = address / NATIVE_CHUNK_SIZE;
if (!native_code_map[chunk].base) {
return NULL;
}
uint32_t offset = address % NATIVE_CHUNK_SIZE;
if (native_code_map[chunk].offsets[offset] == INVALID_OFFSET || native_code_map[chunk].offsets[offset] == EXTENSION_WORD) {
return NULL;
}
return native_code_map[chunk].base + native_code_map[chunk].offsets[offset];
}
code_ptr get_native_from_context(m68k_context * context, uint32_t address)
{
return get_native_address(context->native_code_map, address);
}
uint32_t get_instruction_start(native_map_slot * native_code_map, uint32_t address)
{
address &= 0xFFFFFF;
address /= 2;
uint32_t chunk = address / NATIVE_CHUNK_SIZE;
if (!native_code_map[chunk].base) {
return 0;
}
uint32_t offset = address % NATIVE_CHUNK_SIZE;
if (native_code_map[chunk].offsets[offset] == INVALID_OFFSET) {
return 0;
}
while (native_code_map[chunk].offsets[offset] == EXTENSION_WORD) {
--address;
chunk = address / NATIVE_CHUNK_SIZE;
offset = address % NATIVE_CHUNK_SIZE;
}
return address*2;
}
void map_native_address(m68k_context * context, uint32_t address, code_ptr native_addr, uint8_t size, uint8_t native_size)
{
native_map_slot * native_code_map = context->native_code_map;
m68k_options * opts = context->options;
address &= 0xFFFFFF;
if (address > 0xE00000) {
context->ram_code_flags[(address & 0xC000) >> 14] |= 1 << ((address & 0x3800) >> 11);
if (((address & 0x3FFF) + size) & 0xC000) {
context->ram_code_flags[((address+size) & 0xC000) >> 14] |= 1 << (((address+size) & 0x3800) >> 11);
}
uint32_t slot = (address & 0xFFFF)/1024;
if (!opts->gen.ram_inst_sizes[slot]) {
opts->gen.ram_inst_sizes[slot] = malloc(sizeof(uint8_t) * 512);
}
opts->gen.ram_inst_sizes[slot][((address & 0xFFFF)/2)%512] = native_size;
}
address/= 2;
uint32_t chunk = address / NATIVE_CHUNK_SIZE;
if (!native_code_map[chunk].base) {
native_code_map[chunk].base = native_addr;
native_code_map[chunk].offsets = malloc(sizeof(int32_t) * NATIVE_CHUNK_SIZE);
memset(native_code_map[chunk].offsets, 0xFF, sizeof(int32_t) * NATIVE_CHUNK_SIZE);
}
uint32_t offset = address % NATIVE_CHUNK_SIZE;
native_code_map[chunk].offsets[offset] = native_addr-native_code_map[chunk].base;
for(address++,size-=2; size; address++,size-=2) {
chunk = address / NATIVE_CHUNK_SIZE;
offset = address % NATIVE_CHUNK_SIZE;
if (!native_code_map[chunk].base) {
native_code_map[chunk].base = native_addr;
native_code_map[chunk].offsets = malloc(sizeof(int32_t) * NATIVE_CHUNK_SIZE);
memset(native_code_map[chunk].offsets, 0xFF, sizeof(int32_t) * NATIVE_CHUNK_SIZE);
}
native_code_map[chunk].offsets[offset] = EXTENSION_WORD;
}
}
uint8_t get_native_inst_size(m68k_options * opts, uint32_t address)
{
if (address < 0xE00000) {
return 0;
}
uint32_t slot = (address & 0xFFFF)/1024;
return opts->gen.ram_inst_sizes[slot][((address & 0xFFFF)/2)%512];
}
uint8_t m68k_is_terminal(m68kinst * inst)
{
return inst->op == M68K_RTS || inst->op == M68K_RTE || inst->op == M68K_RTR || inst->op == M68K_JMP
|| inst->op == M68K_TRAP || inst->op == M68K_ILLEGAL || inst->op == M68K_INVALID || inst->op == M68K_RESET
|| (inst->op == M68K_BCC && inst->extra.cond == COND_TRUE);
}
void m68k_handle_deferred(m68k_context * context)
{
m68k_options * opts = context->options;
process_deferred(&opts->gen.deferred, context, (native_addr_func)get_native_from_context);
if (opts->gen.deferred) {
translate_m68k_stream(opts->gen.deferred->address, context);
}
}
void translate_m68k_stream(uint32_t address, m68k_context * context)
{
m68kinst instbuf;
m68k_options * opts = context->options;
code_info *code = &opts->gen.code;
address &= 0xFFFFFF;
if(get_native_address(opts->gen.native_code_map, address)) {
return;
}
char disbuf[1024];
uint16_t *encoded, *next;
if ((address & 0xFFFFFF) < 0x400000) {
encoded = context->mem_pointers[0] + (address & 0xFFFFFF)/2;
} else if ((address & 0xFFFFFF) > 0xE00000) {
encoded = context->mem_pointers[1] + (address & 0xFFFF)/2;
} else {
printf("attempt to translate non-memory address: %X\n", address);
exit(1);
}
do {
if (opts->address_log) {
fprintf(opts->address_log, "%X\n", address);
}
do {
if (address >= 0x400000 && address < 0xE00000) {
translate_out_of_bounds(code);
break;
}
code_ptr existing = get_native_address(opts->gen.native_code_map, address);
if (existing) {
jmp(code, existing);
break;
}
next = m68k_decode(encoded, &instbuf, address);
if (instbuf.op == M68K_INVALID) {
instbuf.src.params.immed = *encoded;
}
uint16_t m68k_size = (next-encoded)*2;
address += m68k_size;
encoded = next;
//m68k_disasm(&instbuf, disbuf);
//printf("%X: %s\n", instbuf.address, disbuf);
//make sure the beginning of the code for an instruction is contiguous
check_code_prologue(code);
code_ptr start = code->cur;
translate_m68k(opts, &instbuf);
code_ptr after = code->cur;
map_native_address(context, instbuf.address, start, m68k_size, after-start);
} while(!m68k_is_terminal(&instbuf));
process_deferred(&opts->gen.deferred, context, (native_addr_func)get_native_from_context);
if (opts->gen.deferred) {
address = opts->gen.deferred->address;
if ((address & 0xFFFFFF) < 0x400000) {
encoded = context->mem_pointers[0] + (address & 0xFFFFFF)/2;
} else if ((address & 0xFFFFFF) > 0xE00000) {
encoded = context->mem_pointers[1] + (address & 0xFFFF)/2;
} else {
printf("attempt to translate non-memory address: %X\n", address);
exit(1);
}
} else {
encoded = NULL;
}
} while(encoded != NULL);
}
code_ptr get_native_address_trans(m68k_context * context, uint32_t address)
{
address &= 0xFFFFFF;
code_ptr ret = get_native_address(context->native_code_map, address);
if (!ret) {
translate_m68k_stream(address, context);
ret = get_native_address(context->native_code_map, address);
}
return ret;
}
void remove_breakpoint(m68k_context * context, uint32_t address)
{
code_ptr native = get_native_address(context->native_code_map, address);
check_cycles_int(context->options, address);
}
void start_68k_context(m68k_context * context, uint32_t address)
{
code_ptr addr = get_native_address_trans(context, address);
m68k_options * options = context->options;
options->start_context(addr, context);
}
void m68k_reset(m68k_context * context)
{
//TODO: Make this actually use the normal read functions
context->aregs[7] = context->mem_pointers[0][0] << 16 | context->mem_pointers[0][1];
uint32_t address = context->mem_pointers[0][2] << 16 | context->mem_pointers[0][3];
start_68k_context(context, address);
}
|