1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "render_audio.h"
#include "util.h"
#include "config.h"
#include "blastem.h"
static uint8_t output_channels;
static uint32_t buffer_samples, sample_rate;
static uint32_t missing_count;
static audio_source *audio_sources[8];
static audio_source *inactive_audio_sources[8];
static uint8_t num_audio_sources;
static uint8_t num_inactive_audio_sources;
static float overall_gain_mult, *mix_buf;
static int sample_size;
typedef void (*conv_func)(float *samples, void *vstream, int sample_count);
static void convert_null(float *samples, void *vstream, int sample_count)
{
memset(vstream, 0, sample_count * sample_size);
}
static void convert_s16(float *samples, void *vstream, int sample_count)
{
int16_t *stream = vstream;
for (int16_t *end = stream + sample_count; stream < end; stream++, samples++)
{
float sample = *samples;
int16_t out_sample;
if (sample >= 1.0f) {
out_sample = 0x7FFF;
} else if (sample <= -1.0f) {
out_sample = -0x8000;
} else {
out_sample = sample * 0x7FFF;
}
*stream = out_sample;
}
}
static void clamp_f32(float *samples, void *vstream, int sample_count)
{
for (; sample_count > 0; sample_count--, samples++)
{
float sample = *samples;
if (sample > 1.0f) {
sample = 1.0f;
} else if (sample < -1.0f) {
sample = -1.0f;
}
*samples = sample;
}
}
static int32_t mix_f32(audio_source *audio, float *stream, int samples)
{
float *end = stream + samples;
int16_t *src = audio->front;
uint32_t i = audio->read_start;
uint32_t i_end = audio->read_end;
float *cur = stream;
float gain_mult = audio->gain_mult * overall_gain_mult;
size_t first_add = output_channels > 1 ? 1 : 0, second_add = output_channels > 1 ? output_channels - 1 : 1;
if (audio->num_channels == 1) {
while (cur < end && i != i_end)
{
*cur += gain_mult * ((float)src[i]) / 0x7FFF;
cur += first_add;
*cur += gain_mult * ((float)src[i++]) / 0x7FFF;
cur += second_add;
i &= audio->mask;
}
} else {
while(cur < end && i != i_end)
{
*cur += gain_mult * ((float)src[i++]) / 0x7FFF;
cur += first_add;
*cur += gain_mult * ((float)src[i++]) / 0x7FFF;
cur += second_add;
i &= audio->mask;
}
}
if (!render_is_audio_sync()) {
audio->read_start = i;
}
if (cur != end) {
debug_message("Underflow of %d samples, read_start: %d, read_end: %d, mask: %X\n", (int)(end-cur)/2, audio->read_start, audio->read_end, audio->mask);
return (cur-end)/2;
} else {
return ((i_end - i) & audio->mask) / audio->num_channels;
}
}
static conv_func convert;
int mix_and_convert(unsigned char *byte_stream, int len, int *min_remaining_out)
{
int samples = len / sample_size;
float *mix_dest = mix_buf ? mix_buf : (float *)byte_stream;
memset(mix_dest, 0, samples * sizeof(float));
int min_buffered = INT_MAX;
int min_remaining_buffer = INT_MAX;
for (uint8_t i = 0; i < num_audio_sources; i++)
{
int buffered = mix_f32(audio_sources[i], mix_dest, samples);
int remaining = (audio_sources[i]->mask + 1) / audio_sources[i]->num_channels - buffered;
min_buffered = buffered < min_buffered ? buffered : min_buffered;
min_remaining_buffer = remaining < min_remaining_buffer ? remaining : min_remaining_buffer;
audio_sources[i]->front_populated = 0;
render_buffer_consumed(audio_sources[i]);
}
convert(mix_dest, byte_stream, samples);
if (min_remaining_out) {
*min_remaining_out = min_remaining_buffer;
}
return min_buffered;
}
uint8_t all_sources_ready(void)
{
uint8_t num_populated = 0;
num_populated = 0;
for (uint8_t i = 0; i < num_audio_sources; i++)
{
if (audio_sources[i]->front_populated) {
num_populated++;
}
}
return num_populated == num_audio_sources;
}
#define BUFFER_INC_RES 0x40000000UL
void render_audio_adjust_clock(audio_source *src, uint64_t master_clock, uint64_t sample_divider)
{
src->buffer_inc = ((BUFFER_INC_RES * (uint64_t)sample_rate) / master_clock) * sample_divider;
}
void render_audio_adjust_speed(float adjust_ratio)
{
for (uint8_t i = 0; i < num_audio_sources; i++)
{
audio_sources[i]->buffer_inc = ((double)audio_sources[i]->buffer_inc) + ((double)audio_sources[i]->buffer_inc) * adjust_ratio + 0.5;
}
}
audio_source *render_audio_source(uint64_t master_clock, uint64_t sample_divider, uint8_t channels)
{
audio_source *ret = NULL;
uint32_t alloc_size = render_is_audio_sync() ? channels * buffer_samples : nearest_pow2(render_min_buffered() * 4 * channels);
render_lock_audio();
if (num_audio_sources < 8) {
ret = calloc(1, sizeof(audio_source));
ret->back = malloc(alloc_size * sizeof(int16_t));
ret->front = render_is_audio_sync() ? malloc(alloc_size * sizeof(int16_t)) : ret->back;
ret->front_populated = 0;
ret->opaque = render_new_audio_opaque();
ret->num_channels = channels;
audio_sources[num_audio_sources++] = ret;
}
render_unlock_audio();
if (!ret) {
fatal_error("Too many audio sources!");
} else {
render_audio_adjust_clock(ret, master_clock, sample_divider);
double lowpass_cutoff = get_lowpass_cutoff(config);
double rc = (1.0 / lowpass_cutoff) / (2.0 * M_PI);
ret->dt = 1.0 / ((double)master_clock / (double)(sample_divider));
double alpha = ret->dt / (ret->dt + rc);
ret->lowpass_alpha = (int32_t)(((double)0x10000) * alpha);
ret->buffer_pos = 0;
ret->buffer_fraction = 0;
ret->last_left = ret->last_right = 0;
ret->read_start = 0;
ret->read_end = render_is_audio_sync() ? buffer_samples * channels : 0;
ret->mask = render_is_audio_sync() ? 0xFFFFFFFF : alloc_size-1;
ret->gain_mult = 1.0f;
}
render_audio_created(ret);
return ret;
}
static float db_to_mult(float gain)
{
return powf(10.0f, gain/20.0f);
}
void render_audio_source_gaindb(audio_source *src, float gain)
{
src->gain_mult = db_to_mult(gain);
}
void render_pause_source(audio_source *src)
{
uint8_t found = 0, remaining_sources;
render_lock_audio();
for (uint8_t i = 0; i < num_audio_sources; i++)
{
if (audio_sources[i] == src) {
audio_sources[i] = audio_sources[--num_audio_sources];
found = 1;
remaining_sources = num_audio_sources;
break;
}
}
render_unlock_audio();
if (found) {
render_source_paused(src, remaining_sources);
}
inactive_audio_sources[num_inactive_audio_sources++] = src;
}
void render_resume_source(audio_source *src)
{
render_lock_audio();
if (num_audio_sources < 8) {
audio_sources[num_audio_sources++] = src;
}
render_unlock_audio();
for (uint8_t i = 0; i < num_inactive_audio_sources; i++)
{
if (inactive_audio_sources[i] == src) {
inactive_audio_sources[i] = inactive_audio_sources[--num_inactive_audio_sources];
}
}
render_source_resumed(src);
}
void render_free_source(audio_source *src)
{
render_pause_source(src);
free(src->front);
if (render_is_audio_sync()) {
free(src->back);
render_free_audio_opaque(src->opaque);
}
free(src);
num_inactive_audio_sources--;
}
static int16_t lowpass_sample(audio_source *src, int16_t last, int16_t current)
{
int32_t tmp = current * src->lowpass_alpha + last * (0x10000 - src->lowpass_alpha);
current = tmp >> 16;
return current;
}
static void interp_sample(audio_source *src, int16_t last, int16_t current)
{
int64_t tmp = last * ((src->buffer_fraction << 16) / src->buffer_inc);
tmp += current * (0x10000 - ((src->buffer_fraction << 16) / src->buffer_inc));
src->back[src->buffer_pos++] = tmp >> 16;
}
static uint32_t sync_samples;
void render_put_mono_sample(audio_source *src, int16_t value)
{
value = lowpass_sample(src, src->last_left, value);
src->buffer_fraction += src->buffer_inc;
uint32_t base = render_is_audio_sync() ? 0 : src->read_end;
while (src->buffer_fraction > BUFFER_INC_RES)
{
src->buffer_fraction -= BUFFER_INC_RES;
interp_sample(src, src->last_left, value);
if (((src->buffer_pos - base) & src->mask) >= sync_samples) {
render_do_audio_ready(src);
}
src->buffer_pos &= src->mask;
}
src->last_left = value;
}
void render_put_stereo_sample(audio_source *src, int16_t left, int16_t right)
{
left = lowpass_sample(src, src->last_left, left);
right = lowpass_sample(src, src->last_right, right);
src->buffer_fraction += src->buffer_inc;
uint32_t base = render_is_audio_sync() ? 0 : src->read_end;
while (src->buffer_fraction > BUFFER_INC_RES)
{
src->buffer_fraction -= BUFFER_INC_RES;
interp_sample(src, src->last_left, left);
interp_sample(src, src->last_right, right);
if (((src->buffer_pos - base) & src->mask)/2 >= sync_samples) {
render_do_audio_ready(src);
}
src->buffer_pos &= src->mask;
}
src->last_left = left;
src->last_right = right;
}
static void update_source(audio_source *src, double rc, uint8_t sync_changed)
{
double alpha = src->dt / (src->dt + rc);
int32_t lowpass_alpha = (int32_t)(((double)0x10000) * alpha);
src->lowpass_alpha = lowpass_alpha;
if (sync_changed) {
uint32_t alloc_size = render_is_audio_sync() ? src->num_channels * buffer_samples : nearest_pow2(render_min_buffered() * 4 * src->num_channels);
src->back = realloc(src->back, alloc_size * sizeof(int16_t));
if (render_is_audio_sync()) {
src->front = malloc(alloc_size * sizeof(int16_t));
} else {
free(src->front);
src->front = src->back;
}
src->mask = render_is_audio_sync() ? 0xFFFFFFFF : alloc_size-1;
src->read_start = 0;
src->read_end = render_is_audio_sync() ? buffer_samples * src->num_channels : 0;
src->buffer_pos = 0;
}
}
uint8_t old_audio_sync;
void render_audio_initialized(render_audio_format format, uint32_t rate, uint8_t channels, uint32_t buffer_size, int sample_size_in)
{
sample_rate = rate;
output_channels = channels;
buffer_samples = buffer_size;
sample_size = sample_size_in;
if (mix_buf) {
free(mix_buf);
mix_buf = NULL;
}
switch(format)
{
case RENDER_AUDIO_S16:
convert = convert_s16;
mix_buf = calloc(output_channels * buffer_samples, sizeof(float));
break;
case RENDER_AUDIO_FLOAT:
convert = clamp_f32;
break;
case RENDER_AUDIO_UNKNOWN:
convert = convert_null;
mix_buf = calloc(output_channels * buffer_samples, sizeof(float));
break;
}
uint32_t syncs = render_audio_syncs_per_sec();
if (syncs) {
sync_samples = rate / syncs;
} else {
sync_samples = buffer_samples;
}
char * gain_str = tern_find_path(config, "audio\0gain\0", TVAL_PTR).ptrval;
overall_gain_mult = db_to_mult(gain_str ? atof(gain_str) : 0.0f);
uint8_t sync_changed = old_audio_sync != render_is_audio_sync();
old_audio_sync = render_is_audio_sync();
double lowpass_cutoff = get_lowpass_cutoff(config);
double rc = (1.0 / lowpass_cutoff) / (2.0 * M_PI);
render_lock_audio();
for (uint8_t i = 0; i < num_audio_sources; i++)
{
update_source(audio_sources[i], rc, sync_changed);
}
render_unlock_audio();
for (uint8_t i = 0; i < num_inactive_audio_sources; i++)
{
update_source(inactive_audio_sources[i], rc, sync_changed);
}
}
|