1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/*
Copyright 2013 Michael Pavone
This file is part of BlastEm.
BlastEm is free software distributed under the terms of the GNU General Public License version 3 or greater. See COPYING for full license text.
*/
#include "tern.h"
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "util.h"
tern_node * tern_insert(tern_node * head, char * key, tern_val value)
{
tern_node ** cur = &head;
while(*key)
{
if (*cur) {
while(*cur && (*cur)->el != *key)
{
if (*key < (*cur)->el) {
cur = &(*cur)->left;
} else {
cur = &(*cur)->right;
}
}
}
if (!*cur) {
*cur = malloc(sizeof(tern_node));
(*cur)->left = NULL;
(*cur)->right = NULL;
(*cur)->straight.next = NULL;
(*cur)->el = *key;
}
cur = &((*cur)->straight.next);
key++;
}
while(*cur && (*cur)->el)
{
cur = &(*cur)->left;
}
if (!*cur) {
*cur = malloc(sizeof(tern_node));
(*cur)->left = NULL;
(*cur)->right = NULL;
(*cur)->el = 0;
}
(*cur)->straight.value = value;
return head;
}
int tern_find(tern_node * head, char * key, tern_val *ret)
{
tern_node * cur = head;
while (cur)
{
if (cur->el == *key) {
if (*key) {
cur = cur->straight.next;
key++;
} else {
*ret = cur->straight.value;
return 1;
}
} else if (*key < cur->el) {
cur = cur->left;
} else {
cur = cur->right;
}
}
return 0;
}
tern_node * tern_find_prefix(tern_node * head, char * key)
{
tern_node * cur = head;
while (cur && *key)
{
if (cur->el == *key) {
cur = cur->straight.next;
key++;
} else if (*key < cur->el) {
cur = cur->left;
} else {
cur = cur->right;
}
}
return cur;
}
intptr_t tern_find_int(tern_node * head, char * key, intptr_t def)
{
tern_val ret;
if (tern_find(head, key, &ret)) {
return ret.intval;
}
return def;
}
tern_node * tern_insert_int(tern_node * head, char * key, intptr_t value)
{
tern_val val;
val.intval = value;
return tern_insert(head, key, val);
}
void * tern_find_ptr_default(tern_node * head, char * key, void * def)
{
tern_val ret;
if (tern_find(head, key, &ret)) {
if (ret.intval & 1) {
return (void *)(ret.intval & ~1);
} else {
return ret.ptrval;
}
}
return def;
}
void * tern_find_ptr(tern_node * head, char * key)
{
return tern_find_ptr_default(head, key, NULL);
}
tern_val tern_find_path_default(tern_node *head, char *key, tern_val def)
{
tern_val ret;
while (*key)
{
if (!tern_find(head, key, &ret)) {
return def;
}
key = key + strlen(key) + 1;
if (*key) {
head = tern_get_node(ret);
if (!head) {
return def;
}
}
}
return ret;
}
tern_val tern_find_path(tern_node *head, char *key)
{
tern_val def;
def.ptrval = NULL;
return tern_find_path_default(head, key, def);
}
tern_node * tern_insert_ptr(tern_node * head, char * key, void * value)
{
tern_val val;
val.ptrval = value;
return tern_insert(head, key, val);
}
tern_node * tern_insert_node(tern_node *head, char *key, tern_node *value)
{
tern_val val;
val.intval = ((intptr_t)value) | 1;
return tern_insert(head, key, val);
}
uint32_t tern_count(tern_node *head)
{
uint32_t count = 0;
if (head->left) {
count += tern_count(head->left);
}
if (head->right) {
count += tern_count(head->right);
}
if (!head->el) {
count++;
} else if (head->straight.next) {
count += tern_count(head->straight.next);
}
return count;
}
#define MAX_ITER_KEY 127
void tern_foreach_int(tern_node *head, iter_fun fun, void *data, char *keybuf, int pos)
{
if (!head->el) {
keybuf[pos] = 0;
fun(keybuf, head->straight.value, data);
}
if (head->left) {
tern_foreach_int(head->left, fun, data, keybuf, pos);
}
if (head->el) {
if (pos == MAX_ITER_KEY) {
fatal_error("tern_foreach_int: exceeded maximum key size");
}
keybuf[pos] = head->el;
tern_foreach_int(head->straight.next, fun, data, keybuf, pos+1);
}
if (head->right) {
tern_foreach_int(head->right, fun, data, keybuf, pos);
}
}
void tern_foreach(tern_node *head, iter_fun fun, void *data)
{
//lame, but good enough for my purposes
char key[MAX_ITER_KEY+1];
tern_foreach_int(head, fun, data, key, 0);
}
char * tern_int_key(uint32_t key, char * buf)
{
char * cur = buf;
while (key)
{
*(cur++) = (key & 0x7F) + 1;
key >>= 7;
}
*cur = 0;
return buf;
}
tern_node * tern_get_node(tern_val value)
{
return value.intval & 1 ? (tern_node *)(value.intval & ~1) : NULL;
}
|