/* SPDX-License-Identifier: Unlicense */ #pragma once #include "data_buffer.h" #include "common.h" #include #include #include enum class AddrMode: uint8_t { kInvalid = 0, kDn, kAn, kAnAddr, kAnAddrIncr, kAnAddrDecr, kD16AnAddr, kD8AnXiAddr, kWord, kLong, kD16PCAddr, kD8PCXiAddr, kImmediate, }; enum class OpSize: int { kByte = 0, kWord = 1, kLong = 2, kInvalid = 3, kNone = kInvalid, kShort, ///< Semantically is the same as kByte, pseudosize, used for Bcc }; struct AddrModeArg { AddrMode mode{}; uint8_t xn{}; /// Xn register number: 0..7 char r{}; /// Xi register type specifier letter: either 'd' or 'a' uint8_t xi{}; /// Xi register number: 0..7 OpSize s{}; /// Size specifier of Xi or imm int32_t value{}; /// Word, Long or Immediate /// Size of the extension: 0, 2 or 4 bytes constexpr size_t Size() const { switch (mode) { case AddrMode::kInvalid: case AddrMode::kDn: case AddrMode::kAn: case AddrMode::kAnAddr: case AddrMode::kAnAddrIncr: case AddrMode::kAnAddrDecr: return 0; case AddrMode::kD16AnAddr: case AddrMode::kD8AnXiAddr: case AddrMode::kWord: return 2; case AddrMode::kLong: return 4; case AddrMode::kD16PCAddr: case AddrMode::kD8PCXiAddr: return 2; case AddrMode::kImmediate: return s == OpSize::kLong ? 4 : 2; } return 0; } static constexpr AddrModeArg Dn(uint8_t xn) { return AddrModeArg{AddrMode::kDn, xn}; } static constexpr AddrModeArg An(uint8_t xn) { return AddrModeArg{AddrMode::kAn, xn}; } static constexpr AddrModeArg AnAddr(uint8_t xn) { return AddrModeArg{AddrMode::kAnAddr, xn}; } static constexpr AddrModeArg AnAddrIncr(uint8_t xn) { return AddrModeArg{AddrMode::kAnAddrIncr, xn}; } static constexpr AddrModeArg AnAddrDecr(uint8_t xn) { return AddrModeArg{AddrMode::kAnAddrDecr, xn}; } static constexpr AddrModeArg D16AnAddr(uint8_t xn, int16_t d16) { return AddrModeArg{AddrMode::kD16AnAddr, xn, 0, 0, OpSize::kWord, d16}; } static constexpr AddrModeArg D8AnXiAddr( uint8_t xn, char r, uint8_t xi, OpSize s, int8_t d8) { return AddrModeArg{AddrMode::kD8AnXiAddr, xn, r, xi, s, d8}; } static constexpr AddrModeArg Word(int16_t w) { return AddrModeArg{AddrMode::kWord, 0, 0, 0, OpSize::kWord, w}; } static constexpr AddrModeArg Long(int32_t l) { return AddrModeArg{AddrMode::kLong, 1, 0, 0, OpSize::kWord, l}; } static constexpr AddrModeArg D16PCAddr(uint8_t xn, int16_t d16) { return AddrModeArg{AddrMode::kD16PCAddr, xn, 0, 0, OpSize::kWord, d16}; } static constexpr AddrModeArg D8PCXiAddr( uint8_t xn, char r, uint8_t xi, OpSize s, int8_t d8) { return AddrModeArg{AddrMode::kD8PCXiAddr, xn, r, xi, s, d8}; } static constexpr AddrModeArg Immediate(OpSize s, int32_t value) { return AddrModeArg{AddrMode::kImmediate, 4, 0, 0, s, value}; } }; enum class OpCode: uint8_t { kNone, kRaw, ///< Emits ".short" kORI, kANDI, kSUBI, kADDI, kEORI, kCMPI, kBTST, kBCHG, kBCLR, kBSET, kMOVEP, kMOVEA, kMOVE, kNEGX, kCLR, kNEG, kNOT, kEXT, kNBCD, kSWAP, kPEA, kILLEGAL, kTAS, kTST, kTRAP, kLINK, kUNLK, kRESET, kNOP, kSTOP, kRTE, kRTS, kTRAPV, kRTR, kJSR, kJMP, kMOVEM, kLEA, kCHK, kADDQ, kSUBQ, kScc, kDBcc, kBcc, kMOVEQ, kDIVU, kDIVS, kSBCD, kOR, kSUB, kSUBX, kSUBA, kEOR, kCMPM, kCMP, kCMPA, kMULU, kMULS, kABCD, kEXG, kAND, kADD, kADDX, kADDA, kASR, kASL, kLSR, kLSL, kROXR, kROXL, kROR, kROL, }; enum class Condition: uint8_t { kT = 0, kF = 1, kHI = 2, kLS = 3, kCC = 4, kCS = 5, kNE = 6, kEQ = 7, kVC = 8, kVS = 9, kPL = 10, kMI = 11, kGE = 12, kLT = 13, kGT = 14, kLE = 15, }; enum class ArgType: uint8_t { kNone, kRaw, ///< Emits "0xXXXX" for ".short" kDn, ///< Dn kAn, ///< An kAnAddr, ///< (An) kAnAddrIncr, ///< (An)+ kAnAddrDecr, ///< -(An) kD16AnAddr, ///< (d16,An) kD8AnXiAddr, ///< (d8,An,Xi) kWord, ///< (xxx).W kLong, ///< (xxx).L kD16PCAddr, ///< (d16,PC) kD8PCXiAddr, ///< (d8,PC,Xn) kImmediate, ///< #imm kRegMask, kRegMaskPredecrement, kDisplacement, ///< For BRA, BSR, Bcc and DBcc kCCR, kSR, kUSP, }; enum class RegKind: uint8_t { kDnWord, kDnLong, kAnWord, kAnLong, }; struct D8AnPCXiAddr { RegKind kind; ///< Kind of Xi reg, for kD8AnXiAddr and kD8PCXiAddr uint8_t an; ///< ID number of An reg, for kD8AnXiAddr only uint8_t xi; ///< ID number of Xi reg, for kD8AnXiAddr and kD8PCXiAddr int8_t d8; ///< Displacement, for kD8AnXiAddr and kD8PCXiAddr }; struct D16AnPCAddr { uint8_t an; ///< ID number of An reg, for kD16AnAddr only int16_t d16; ///< Displacement, for D16AnAddr and kD16PCAddr }; static_assert(sizeof(D8AnPCXiAddr) == sizeof(uint32_t), ""); static_assert(sizeof(D16AnPCAddr) == sizeof(uint32_t), ""); struct Arg { using Self = Arg; ArgType type{ArgType::kNone}; union { int32_t lword{}; ///< kLong, kWord, kDisplacement, kImmediate uint16_t uword; ///< kRegMask, kRaw uint8_t xn; ///< kDn, kAn, kAnAddr, kAnAddrIncr, kAnAddrDecr D16AnPCAddr d16_an; ///< kD16AnAddr D16AnPCAddr d16_pc; ///< kD16PCAddr D8AnPCXiAddr d8_an_xi; ///< kD8AnXiAddr D8AnPCXiAddr d8_pc_xi; ///< kD8PCXiAddr }; static constexpr Self Raw(const uint16_t instr) { Arg a{ArgType::kRaw, 0}; a.uword = instr; return a; } static constexpr Self RegMask(const uint16_t regmask) { Arg a{ArgType::kRegMask, 0}; a.uword = regmask; return a; } static constexpr Self RegMaskPredecrement(const uint16_t regmask) { Arg a{ArgType::kRegMaskPredecrement, 0}; a.uword = regmask; return a; } static constexpr Self Displacement(const int32_t displacement) { Arg a{ArgType::kDisplacement, 0}; a.lword = displacement; return a; } static constexpr Self Immediate(int32_t value) { Arg a{ArgType::kImmediate, 0}; a.lword = value; return a; } static constexpr Self CCR() { return Arg{ArgType::kCCR, 0}; } static constexpr Self SR() { return Arg{ArgType::kSR, 0}; } static constexpr Self USP() { return Arg{ArgType::kUSP, 0}; } static constexpr Self AddrModeXn(const ArgType type, const uint8_t xn) { Arg a{type, 0}; a.xn = xn; return a; } private: static constexpr Self addrModeD16AnAddr(const D16AnPCAddr d16_an) { Arg a{ArgType::kD16AnAddr, 0}; a.d16_an = d16_an; return a; } static constexpr Self addrModeD16PCAddr(const D16AnPCAddr d16_pc) { Arg a{ArgType::kD16PCAddr, 0}; a.d16_pc = d16_pc; return a; } static constexpr Self addrModeWord(const int16_t value) { Arg a{ArgType::kWord, 0}; a.lword = value; return a; } static constexpr Self addrModeLong(const int32_t value) { Arg a{ArgType::kLong, 0}; a.lword = value; return a; } static constexpr Self addrModeD8AnAddr(const D8AnPCXiAddr d8_an_xi) { Arg a{ArgType::kD8AnXiAddr, 0}; a.d8_an_xi = d8_an_xi; return a; } static constexpr Self addrModeD8PCAddr(const D8AnPCXiAddr d8_pc_xi) { Arg a{ArgType::kD8PCXiAddr, 0}; a.d8_pc_xi = d8_pc_xi; return a; } static constexpr Self addrModeImmediate(const int32_t value) { Arg a{ArgType::kImmediate, 0}; a.lword = value; return a; } static constexpr RegKind regKindFromRegCharSizeChar(char r, OpSize s) { if (r == 'd' && s == OpSize::kWord) { return RegKind::kDnWord; } else if (r == 'd' && s == OpSize::kLong) { return RegKind::kDnLong; } else if (r == 'a' && s == OpSize::kWord) { return RegKind::kAnWord; } else if (r == 'a' && s == OpSize::kLong) { return RegKind::kAnLong; } return RegKind::kDnWord; } public: static constexpr Self FromAddrModeArg(AddrModeArg arg) { switch (arg.mode) { case AddrMode::kInvalid: return Arg{}; case AddrMode::kDn: return AddrModeXn(ArgType::kDn, arg.xn); case AddrMode::kAn: return AddrModeXn(ArgType::kAn, arg.xn); case AddrMode::kAnAddr: return AddrModeXn(ArgType::kAnAddr, arg.xn); case AddrMode::kAnAddrIncr: return AddrModeXn(ArgType::kAnAddrIncr, arg.xn); case AddrMode::kAnAddrDecr: return AddrModeXn(ArgType::kAnAddrDecr, arg.xn); case AddrMode::kD16AnAddr: return addrModeD16AnAddr(D16AnPCAddr{arg.xn, static_cast(arg.value)}); case AddrMode::kD8AnXiAddr: return addrModeD8AnAddr(D8AnPCXiAddr{ regKindFromRegCharSizeChar(arg.r, arg.s), arg.xn, arg.xi, static_cast(arg.value), }); case AddrMode::kWord: return addrModeWord(arg.value); case AddrMode::kLong: return addrModeLong(arg.value); case AddrMode::kD16PCAddr: return addrModeD16PCAddr(D16AnPCAddr{0, static_cast(arg.value)}); case AddrMode::kD8PCXiAddr: return addrModeD8PCAddr(D8AnPCXiAddr{ regKindFromRegCharSizeChar(arg.r, arg.s), 0, arg.xi, static_cast(arg.value), }); case AddrMode::kImmediate: return addrModeImmediate(arg.value); } return Arg{}; } int SNPrint(char *buf, size_t bufsz, const Settings&) const; }; enum class TracedNodeType { kInstruction, kData, }; constexpr size_t kRefsCountPerBuffer = 10; constexpr size_t kMnemonicBufferSize = 10; constexpr size_t kArgsBufferSize = 80; enum class ReferenceType { kUnknown = 0, kBranch, kCall, }; struct ReferenceRecord { ReferenceType type{}; uint32_t address{}; }; struct ReferenceNode { ReferenceNode *next{}; ReferenceRecord refs[kRefsCountPerBuffer]; uint32_t refs_count{}; }; struct DisasmNode { const TracedNodeType type{}; /// Absolute offset of the instruction (PC value basically) const uint32_t offset{}; /// Instruction size in bytes size_t size{kInstructionSizeStepBytes}; /// Indicates whether `branch_addr` should be interpreted bool has_branch_addr{}; /// Absolute address of where to branch to uint32_t branch_addr{}; /// Indicates whether instruction is a call (BSR, JSR) or just a branch /// (Bcc, JMP) if `has_branch_addr` is set bool is_call{}; ReferenceNode *ref_by{}; ReferenceNode *last_ref_by{}; OpCode opcode{OpCode::kNone}; ///< Should replace `mnemonic` field /// Size specifier, the suffix `b`, `w` or `l` OpSize size_spec{OpSize::kNone}; Condition condition{Condition::kT}; ///< For Scc, Bcc and Dbcc Arg arg1{}, arg2{}; ///< Should replace `arguments` field /*! Disassembles instruction with arguments * returns size of whole instruction with arguments in bytes */ size_t Disasm(const DataBuffer &code); int FPrint(FILE*, const Settings&) const; void AddReferencedBy(uint32_t offset, ReferenceType); ~DisasmNode(); private: };