/**
******************************************************************************
* @file tsl_acq_stm8l_sw.c
* @author MCD Application Team
* @version V1.4.4
* @date 31-March-2014
* @brief This file contains all functions to manage the acquisition
* on STM8L products using the software acquisition mode.
******************************************************************************
* @attention
*
*
© COPYRIGHT 2014 STMicroelectronics
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "tsl_acq_stm8l_sw.h"
#include "tsl_globals.h"
/* Private typedefs ----------------------------------------------------------*/
/** Structure containing RI IO informations according to GPIO.
*/
typedef struct
{
unsigned int IO_Channel : 4; /**< Channel number from 1 to 4 in the Routing interface group */
unsigned int IO_Group : 4; /**< Group number in the Routing interface */
} TSL_IOConf_T;
/* Private defines -----------------------------------------------------------*/
/** Define if maximum channel number is 3 or 4 according to the Device Density
*/
#if defined(STM8L15X_LD) || defined(STM8L10X)
#define MAX_CHANNEL_NUMBER_BY_GROUP (4)
#else
#define MAX_CHANNEL_NUMBER_BY_GROUP (3)
#endif // defined(STM8L15X_LD) || defined(STM8L10X)
#if defined(_COSMIC_)
#define INLINE @inline
#elif defined(_RAISONANCE_)
#define INLINE inline
#elif defined(_IAR_)
#define INLINE
#else
#error "Compiler not Supported"
#endif
/* Private macros ------------------------------------------------------------*/
#if !defined(STM8L10X)
#define GPIO_PORT(GPIO) (GPIO >> 3) /**< Get the GPIO port*/
#define GPIO_BIT(GPIO) (GPIO & 0x07) /**< Get the GPIO pin number*/
#else
#define GPIO_PORT(GPIO) (GPIO >> 2) /**< Get the GPIO port*/
#define GPIO_BIT(GPIO) (GPIO & 0x03) /**< Get the GPIO pin number*/
#endif // !defined(STM8L10X)
#define IS_BANK_INDEX_OK(INDEX) (((INDEX) == 0) || (((INDEX) > 0) && ((INDEX) < TSLPRM_TOTAL_BANKS))) /**< Check if the index have a good range*/
#define GPIO_ODR_HIGH(GPIO) (p_GPIOx[GPIO_PORT(GPIO)]->ODR |= (uint8_t)(1 << GPIO_BIT(GPIO)))
#define GPIO_ODR_LOW(GPIO) (p_GPIOx[GPIO_PORT(GPIO)]->ODR &= (uint8_t)(~(1 << GPIO_BIT(GPIO))))
#define GPIO_DDR_IN(GPIO) (p_GPIOx[GPIO_PORT(GPIO)]->DDR &= (uint8_t)(~(1 << GPIO_BIT(GPIO))))
#define GPIO_DDR_OUT(GPIO) (p_GPIOx[GPIO_PORT(GPIO)]->DDR |= (uint8_t)(1 << GPIO_BIT(GPIO)))
#define GPIO_CR1_PP(GPIO) (p_GPIOx[GPIO_PORT(GPIO)]->CR1 |= (uint8_t)(1 << GPIO_BIT(GPIO)))
#define GPIO_CR1_FLOATING(GPIO) (p_GPIOx[GPIO_PORT(GPIO)]->CR1 &= (uint8_t)(~(1 << GPIO_BIT(GPIO))))
#define DISABLE_MASK(GPIO) (DisableMask[(GPIO_to_SW_Conf[GPIO].IO_Channel)-1] |= (uint8_t)(1 << GPIO_to_SW_Conf[GPIO].IO_Group)) /**< Create disable mask array to modify initial bank mask before acquisition (only for STATUS_OFF)*/
#define DISABLE_SAMPLING(GPIO) (DisableSampling |= (uint8_t)(1 << GPIO_to_SW_Conf[GPIO].IO_Group)) /**< Create disable sampling mask to don't take sampling measurement of corresponding channels(for STATUS_BURST_ONLY and shield) */
/* Private variables ---------------------------------------------------------*/
uint8_t SpreadCounter = TSLPRM_SPREAD_MIN;
uint16_t ChargeTransferCounter; // This variable count the charge transfer number in the acquisition loop
uint8_t BankDone; // Control if all activate sampling reach the VIH level
uint8_t CurrentSampling; // Mask to control IOGCR register
uint8_t CurrentChannel; // Mask to control IOGCR register
uint8_t ChannelSampling; // Contain the channel number where all sampling are connected
uint8_t DisableSampling; // Disable sampling mask when the Burst Only mode is activated for one channel of the current bank(not get the measure)
TSL_Bank_Config_Mask_T BankMask[TSLPRM_TOTAL_BANKS]; // Complete masks (channel and sampling) to configure IOCMRx and IOSRx registers for all banks
uint8_t SamplingMask[TSLPRM_TOTAL_BANKS]; // Sampling mask to configure IOGCR register for all banks
uint8_t DisableMask[MAX_CHANNEL_NUMBER_BY_GROUP]; // Complete disable mask(channel and sampling) when the Channel OFF mode is activated for one channel of the current bank(to modifie the CurrentBank)
uint8_t CurrentBank[MAX_CHANNEL_NUMBER_BY_GROUP]; // Complete mask for the current bank
#if !defined(STM8L10X)
#if defined(STM8L15X_LD)
__IO uint8_t *RI_IOIRx_Register[MAX_CHANNEL_NUMBER_BY_GROUP] = {&(RI->IOIR1), &(RI->IOIR2), &(RI->IOIR3), &(RI->IOIR4)};
#else
__IO uint8_t *RI_IOIRx_Register[MAX_CHANNEL_NUMBER_BY_GROUP] = {&(RI->IOIR1), &(RI->IOIR2), &(RI->IOIR3)};
#endif // STM8L15X_LD
__IO uint8_t *p_IOIRx; // Pointer to the IOIRx register (x from 1 to 4)
GPIO_TypeDef *p_GPIOx[] = {GPIOA, GPIOB, GPIOC, GPIOD, GPIOE, GPIOF};
uint16_t tab_MeasurementCounter[8] = {0}; // Measurement of each sampling of the current bank
uint8_t ChannelMask[TSLPRM_TOTAL_BANKS]; // Channel mask to configure IOGCR register for all banks
/* Table which do the link between GPIO and switch configuation:{x,y}
x = channel number
y = group number - 1
Note: {0,0} = not connect to IO switch
*/
CONST TSL_IOConf_T GPIO_to_SW_Conf[40] =
{
// Port A definitions
{0, 0}, // PA0
{0, 0}, // PA1
{0, 0}, // PA2
{0, 0}, // PA3
{3, 0}, // PA4 is channel 3 of Group 1
{2, 0}, // PA5 is channel 2 of Group 1
{1, 0}, // PA6 is channel 1 of Group 1
{4, 0}, // PA7 is channel 4 of Group 1
// Port B definitions
{1, 6}, // PB0
{3, 5},
{2, 5},
{1, 5},
{3, 4},
{2, 4},
{1, 4},
{3, 3}, // PB7
// Port C definitions
{0, 0}, // PC0
{0, 0},
{1, 2},
{3, 1},
{2, 1},
{0, 0},
{0, 0},
{1, 1}, // PC7
// Port D definitions
{2, 7}, // PD0
{1, 7},
{3, 6},
{2, 6},
{2, 3},
{1, 3},
{3, 2},
{2, 2}, // PD7
// Port E definitions
{0, 0}, // PE0
{0, 0},
{0, 0},
{4, 6},
{4, 7},
{3, 7},
{0, 0},
{4, 1} // PE7
};
#else // STM8L10X
__IO uint8_t *p_GPIOx_IDR;
__IO uint8_t *GPIOx_IDR[2] = {&(GPIOB->IDR), &(GPIOD->IDR)};
GPIO_TypeDef *p_GPIOx[] = {GPIOB, GPIOD};
uint16_t tab_MeasurementCounter[2] = {0}; // Measurement of each sampling of the current bank
uint8_t Bank_IO_CompMask[TSLPRM_TOTAL_BANKS]; // IO Mask for Comparator register to control SW
uint8_t BankSamplingCompMask[TSLPRM_TOTAL_BANKS]; // Sampling Mask for Comparator register to control SW
uint8_t Bank_IOShield_CompMask[TSLPRM_TOTAL_BANKS];
uint8_t BankSamplingShieldCompMask[TSLPRM_TOTAL_BANKS];
/* Table which do the link between GPIO and switch configuation:{x,y}
x = channel number
y = group number - 1
Note: {0,0} = not connect to IO switch
*/
CONST TSL_IOConf_T GPIO_to_SW_Conf[8] =
{
// Port B definitions
{1, 0}, // PB0 is channel 1 of Group 1
{2, 0}, // PB1 is channel 2 of Group 1
{1, 1}, // PB2 is channel 1 of Group 2
{2, 1}, // PB3 is channel 2 of Group 2
// Port D definitions
{3, 0}, // PD0 is channel 3 of Group 1
{4, 0}, // PD1 is channel 4 of Group 1
{3, 1}, // PD2 is channel 3 of Group 2
{4, 1} // PD3 is channel 4 of Group 2
};
#endif // !defined(STM8L10X)
/* Private functions prototype -----------------------------------------------*/
void SoftDelay(uint16_t val);
void CreateMask(TSL_tIndex_T idx_bk, uint8_t GPIO);
void GetCounter(__IO uint8_t *p_reg, uint8_t *p_old_status);
INLINE void __Delay_Charge(void);
void CreateIOMask(TSL_tIndex_T idx_bk, uint8_t GPIO);
void CreateSamplingMask(TSL_tIndex_T idx_bk, uint8_t GPIO);
#if (TSLPRM_USE_SPREAD_SPECTRUM > 0)
INLINE void SwSpreadSpectrum(void);
#endif
/**
* @brief Delay in NOPs to apply during charging time.
* @param None
* @retval None
*/
INLINE void __Delay_Charge(void)
{
#if TSLPRM_DELAY_CHARGE > 0
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 1
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 2
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 3
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 4
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 5
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 6
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 7
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 8
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 9
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 10
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 11
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 12
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 13
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 14
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 15
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 16
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 17
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 18
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 19
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 20
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 21
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 22
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 23
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 24
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 25
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 26
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 27
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 28
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 29
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 30
nop();
#endif
#if TSLPRM_DELAY_CHARGE > 31
nop();
#endif
}
/**
* @brief Delay in NOPs to apply during transfering time.
* @param None
* @retval None
*/
INLINE void __Delay_Transfer(void)
{
#if TSLPRM_DELAY_TRANSFER > 0
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 1
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 2
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 3
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 4
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 5
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 6
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 7
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 8
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 9
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 10
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 11
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 12
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 13
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 14
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 15
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 16
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 17
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 18
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 19
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 20
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 21
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 22
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 23
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 24
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 25
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 26
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 27
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 28
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 29
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 30
nop();
#endif
#if TSLPRM_DELAY_TRANSFER > 31
nop();
#endif
}
/**
* @brief Initialize the acquisition module.
* @param None
* @retval Status
*/
TSL_Status_enum_T TSL_acq_Init(void)
{
CONST TSL_Bank_T *p_bank = &(TSL_Globals.Bank_Array[0]); // Pointer to the first bank
CONST TSL_ChannelSrc_T *p_chSrc = p_bank->p_chSrc; // Pointer to the source channel of the current bank
TSL_tNb_T number_of_channels = 0;
TSL_tIndex_T idx_bk;
TSL_tIndex_T idx_ch;
#if !defined(STM8L10X)
// Enable comparator clock to activate the RI block
CLK->PCKENR2 |= CLK_PCKENR2_COMP;
#endif // !defined(STM8L10X)
// Enable mode software (bit AM)
#if defined(STM8L15X_LD)
RI->CR &= (uint8_t)(~0x04); // Mode SW
#endif // STM8L15X_LD
// Initializes each bank and configures the used GPIO
for (idx_bk = 0; idx_bk < TSLPRM_TOTAL_BANKS; idx_bk++)
{
p_bank = &(TSL_Globals.Bank_Array[idx_bk]);
p_chSrc = p_bank->p_chSrc;
number_of_channels = p_bank->NbChannels;
#if !defined(STM8L10X)
// Mask Initialization
BankMask[idx_bk].ch1 = 0;
BankMask[idx_bk].ch2 = 0;
BankMask[idx_bk].ch3 = 0;
BankMask[idx_bk].ch4 = 0;
#else
// Mask Initialization
BankMask[idx_bk].GPIOB_IO = 0;
BankMask[idx_bk].GPIOB_Samp = 0;
BankMask[idx_bk].GPIOD_IO = 0;
BankMask[idx_bk].GPIOD_Samp = 0;
#endif // !defined(STM8L10X)
// Get which channel is used for sampling only one time because it's the same for each couple
SamplingMask[idx_bk] = (uint8_t)GPIO_to_SW_Conf[p_chSrc->sampling].IO_Channel;
#if (TSLPRM_USE_SHIELD > 0)
// Create Mask per bank for shield
#if !defined(STM8L10X)
CreateMask(idx_bk, p_bank->shield_sampling);
CreateMask(idx_bk, p_bank->shield_channel);
ChannelMask[idx_bk] |= (uint8_t)(3 << (2 * ((GPIO_to_SW_Conf[p_bank->shield_channel].IO_Channel) - 1)));
#else
CreateIOMask(idx_bk, p_bank->shield_channel);
CreateSamplingMask(idx_bk, p_bank->shield_sampling);
#endif // !defined(STM8L10X)
// Check if shield sampling capacitors are in the same number of channel for each group
if ((SamplingMask[idx_bk] != (uint8_t)GPIO_to_SW_Conf[p_bank->shield_sampling].IO_Channel))
{
return TSL_STATUS_ERROR;
}
// GPIO in Output
GPIO_DDR_OUT(p_bank->shield_sampling);
GPIO_DDR_OUT(p_bank->shield_channel);
// GPIO in PP
GPIO_CR1_PP(p_bank->shield_sampling);
GPIO_CR1_PP(p_bank->shield_channel);
// Output in Low level
GPIO_ODR_LOW(p_bank->shield_sampling);
GPIO_ODR_LOW(p_bank->shield_channel);
// Activate Comparator 1
if (GPIO_to_SW_Conf[p_bank->shield_sampling].IO_Group == 0)
{
COMP->CR |= 0x02;
}
// Activate Comparator 2
if (GPIO_to_SW_Conf[p_bank->shield_sampling].IO_Group == 1)
{
COMP->CR |= 0x04;
}
#endif // TSLPRM_USE_SHIELD
// Initialize the mask for channel and sampling
for (idx_ch = 0; idx_ch < number_of_channels; idx_ch++)
{
#if !defined(STM8L10X)
// Create Mask per bank for channel and sampling
CreateMask(idx_bk, p_chSrc->channel);
CreateMask(idx_bk, p_chSrc->sampling);
ChannelMask[idx_bk] |= (uint8_t)(3 << (2 * ((GPIO_to_SW_Conf[p_chSrc->channel].IO_Channel) - 1)));
// Check if sampling capacitors are in the same number of channel for each group
if ((SamplingMask[idx_bk] != (uint8_t)GPIO_to_SW_Conf[p_chSrc->sampling].IO_Channel))
{
return TSL_STATUS_ERROR;
}
#else
// Activate Comparator 1
if (p_chSrc->IdxSrc == 0)
{
COMP->CR |= 0x02;
}
// Activate Comparator 2
if (p_chSrc->IdxSrc == 1)
{
COMP->CR |= 0x04;
}
// Create Mask per bank for channel and sampling
CreateIOMask(idx_bk,p_chSrc->channel);
Bank_IO_CompMask[idx_bk] |= (uint8_t)(1 << (GPIO_to_SW_Conf[p_chSrc->channel].IO_Channel - 1));
Bank_IO_CompMask[idx_bk] = (uint8_t)(Bank_IO_CompMask[idx_bk] << (4 * GPIO_to_SW_Conf[p_chSrc->channel].IO_Group));
CreateSamplingMask(idx_bk,p_chSrc->sampling);
BankSamplingCompMask[idx_bk] |= (uint8_t)(1 << (GPIO_to_SW_Conf[p_chSrc->sampling].IO_Channel - 1));
BankSamplingCompMask[idx_bk] = (uint8_t)(BankSamplingCompMask[idx_bk] << (4 * GPIO_to_SW_Conf[p_chSrc->sampling].IO_Group));
if ((SamplingMask[idx_bk] != (uint8_t)GPIO_to_SW_Conf[p_chSrc->sampling].IO_Channel))
{
return TSL_STATUS_ERROR;
}
#if (TSLPRM_USE_SHIELD > 0)
Bank_IOShield_CompMask[idx_bk] |= (uint8_t)(1 << (GPIO_to_SW_Conf[p_bank->shield_channel].IO_Channel - 1));
Bank_IOShield_CompMask[idx_bk] = (uint8_t)(Bank_IOShield_CompMask[idx_bk] << (4 * GPIO_to_SW_Conf[p_bank->shield_channel].IO_Group));
BankSamplingShieldCompMask[idx_bk] |= (uint8_t)(1 << (GPIO_to_SW_Conf[p_bank->shield_sampling].IO_Channel - 1));
BankSamplingShieldCompMask[idx_bk] = (uint8_t)(BankSamplingShieldCompMask[idx_bk] << (4 * GPIO_to_SW_Conf[p_bank->shield_sampling].IO_Group));
Bank_IO_CompMask[idx_bk] = (uint8_t)(Bank_IO_CompMask[idx_bk] | Bank_IOShield_CompMask[idx_bk]);
BankSamplingCompMask[idx_bk] = (uint8_t)(BankSamplingCompMask[idx_bk] | BankSamplingShieldCompMask[idx_bk]);
#endif
#endif // !defined(STM8L10X)
// GPIO are configured in PP Low mode when inactive
// GPIO in Output
GPIO_DDR_OUT(p_chSrc->sampling);
GPIO_DDR_OUT(p_chSrc->channel);
// GPIO in PP
GPIO_CR1_PP(p_chSrc->sampling);
GPIO_CR1_PP(p_chSrc->channel);
// Output in Low level
GPIO_ODR_LOW(p_chSrc->sampling);
GPIO_ODR_LOW(p_chSrc->channel);
p_chSrc++; // Next channel
}
#if !defined(STM8L10X)
// Unlock IO to RI register: IO controlled by GPIO
RI->IOCMR1 &= (uint8_t)(~BankMask[idx_bk].ch1);
RI->IOCMR2 &= (uint8_t)(~BankMask[idx_bk].ch2);
RI->IOCMR3 &= (uint8_t)(~BankMask[idx_bk].ch3);
#if defined(STM8L15X_LD)
RI->IOCMR4 &= (uint8_t)(~BankMask[idx_bk].ch4);
#endif // STM8L15X_LD || STM8L10X
#endif // !defined(STM8L10X)
}
return TSL_STATUS_OK;
}
#if !defined(STM8L10X)
/**
* @brief Create Mask for all banks
* @param[in] idx_bk Index of the Bank to configure
* @param[in] GPIO Pin number
* @retval None
*/
void CreateMask(TSL_tIndex_T idx_bk, uint8_t GPIO)
{
switch (GPIO_to_SW_Conf[GPIO].IO_Channel)
{
case 1:
BankMask[idx_bk].ch1 |= (uint8_t)(1 << GPIO_to_SW_Conf[GPIO].IO_Group); // Mask for all first channel
break;
case 2:
BankMask[idx_bk].ch2 |= (uint8_t)(1 << GPIO_to_SW_Conf[GPIO].IO_Group); // Mask for all second channel
break;
case 3:
BankMask[idx_bk].ch3 |= (uint8_t)(1 << GPIO_to_SW_Conf[GPIO].IO_Group); // Mask fo all third channel
break;
#if defined(STM8L15X_LD) || defined(STM8L10X)
case 4:
BankMask[idx_bk].ch4 |= (uint8_t)(1 << GPIO_to_SW_Conf[GPIO].IO_Group); // Mask for all fourth channel
break;
#endif // STM8L15X_LD || STM8L10X
default:
break;
}
}
#else
/**
* @brief Create IO Mask for all banks
* @param[in] idx_bk Index of the Bank to configure
* @param[in] GPIO Pin number
* @retval None
*/
void CreateIOMask(TSL_tIndex_T idx_bk, uint8_t GPIO)
{
switch (GPIO_PORT(GPIO))
{
case 0:
BankMask[idx_bk].GPIOB_IO |= (uint8_t)(1 << GPIO_BIT(GPIO));
break;
case 1:
BankMask[idx_bk].GPIOD_IO |= (uint8_t)(1 << GPIO_BIT(GPIO));
break;
default:
break;
}
}
/**
* @brief Create Sampling Mask for all banks
* @param[in] idx_bk Index of the Bank to configure
* @param[in] GPIO Pin number
* @retval None
*/
void CreateSamplingMask(TSL_tIndex_T idx_bk, uint8_t GPIO)
{
switch (GPIO_PORT(GPIO))
{
case 0:
BankMask[idx_bk].GPIOB_Samp |= (uint8_t)(1 << GPIO_BIT(GPIO));
break;
case 1:
BankMask[idx_bk].GPIOD_Samp |= (uint8_t)(1 << GPIO_BIT(GPIO));
break;
default:
break;
}
}
#endif // !defined(STM8L10X)
#if (TSLPRM_USE_SPREAD_SPECTRUM > 0)
/**
* @brief Spread Spectrum using a variable software delay.
* @param None
* @retval None
*/
INLINE void SwSpreadSpectrum(void)
{
uint8_t idx;
SpreadCounter++;
if (SpreadCounter == TSLPRM_SPREAD_MAX)
{
SpreadCounter = TSLPRM_SPREAD_MIN;
}
idx = SpreadCounter;
while (--idx) {}
}
#endif
/**
* @brief Bank configuration
* @param[in] idx_bk Index of the Bank to configure
* @retval Status
*/
TSL_Status_enum_T TSL_acq_BankConfig(TSL_tIndex_T idx_bk)
{
uint8_t idx_i;
#if defined(STM8L10X)
uint8_t GroupUsed = 0;
#endif
TSL_tIndex_T idx_dest;
TSL_tIndex_T idx_ch;
TSL_tNb_T number_of_channels = 0;
CONST TSL_Bank_T *p_bank; // Pointer to the current bank
CONST TSL_ChannelDest_T *p_chDest; // Pointer to the first destination channel of the current bank
CONST TSL_ChannelSrc_T *p_chSrc; // Pointer to the fisrt source channel of the current bank
// Check parameters (if USE_FULL_ASSERT is defined)
assert_param(IS_BANK_INDEX_OK(idx_bk));
p_bank = &(TSL_Globals.Bank_Array[idx_bk]);
number_of_channels = p_bank->NbChannels;
p_chDest = p_bank->p_chDest;
p_chSrc = p_bank->p_chSrc;
// Reset the disable mask
DisableSampling = 0;
for (idx_i = 0; idx_i < MAX_CHANNEL_NUMBER_BY_GROUP; idx_i++)
{
DisableMask[idx_i] = 0;
}
BankDone = 0;
#if (TSLPRM_USE_SHIELD > 0)
DISABLE_SAMPLING(p_bank->shield_sampling);
#endif // TSLPRM_USE_SHIELD
ChannelSampling = SamplingMask[idx_bk]; // Mask for the channel used by sampling
// Loop for each channel of this bank
for (idx_ch = 0; idx_ch < number_of_channels; idx_ch++)
{
idx_dest = p_chDest->IdxDest;
#if defined(STM8L10X)
if (p_chSrc->IdxSrc == 0)
{
GroupUsed |= 0x01;
}
if (p_chSrc->IdxSrc == 1)
{
GroupUsed |= 0x02;
}
#endif // defined(STM8L10X)
// Mode Status OFF
if (p_bank->p_chData[idx_dest].Flags.ObjStatus == TSL_OBJ_STATUS_OFF)
{
#if !defined(STM8L10X)
// Update Mask if channels are disabled
DISABLE_MASK(p_chSrc->channel);
DISABLE_MASK(p_chSrc->sampling);
#else
// Update Mask if channels are disabled
if (GPIO_to_SW_Conf[p_chSrc->channel].IO_Channel > 2)
{
DisableMask[2] |= (uint8_t)(1 << ((2 * GPIO_to_SW_Conf[p_chSrc->channel].IO_Group) + (GPIO_to_SW_Conf[p_chSrc->channel].IO_Channel - 3)));
}
else
{
DisableMask[0] |= (uint8_t)(1 << ((2 * GPIO_to_SW_Conf[p_chSrc->channel].IO_Group) + (GPIO_to_SW_Conf[p_chSrc->channel].IO_Channel - 1)));
}
if (GPIO_to_SW_Conf[p_chSrc->sampling].IO_Channel > 2)
{
DisableMask[3] |= (uint8_t)(1 << ((2 * GPIO_to_SW_Conf[p_chSrc->sampling].IO_Group) + (GPIO_to_SW_Conf[p_chSrc->sampling].IO_Channel - 3)));
}
else
{
DisableMask[1] |= (uint8_t)(1<<((2 * GPIO_to_SW_Conf[p_chSrc->sampling].IO_Group) + (GPIO_to_SW_Conf[p_chSrc->sampling].IO_Channel - 1)));
}
#endif // !defined(STM8L10X)
}
// Mode Status BURST ONLY
if (p_bank->p_chData[idx_dest].Flags.ObjStatus == TSL_OBJ_STATUS_BURST_ONLY)
{
#if !defined(STM8L10X)
DISABLE_SAMPLING(p_chSrc->sampling);
#else
if (p_chSrc->IdxSrc == 0)
{
GroupUsed &= (uint8_t)(~0x01);
}
if (p_chSrc->IdxSrc == 1)
{
GroupUsed &= (uint8_t)(~0x02);
}
#endif // !defined(STM8L10X)
}
tab_MeasurementCounter[GPIO_to_SW_Conf[p_chSrc->sampling].IO_Group] = 0;
// Next channel
p_chSrc++;
p_chDest++;
}
#if !defined(STM8L10X)
//Get Mask for the current bank
CurrentBank[0] = (uint8_t)(BankMask[idx_bk].ch1 & (~DisableMask[0])); // Mask for all 1st channel are used by channels and sampling for this bank
CurrentBank[1] = (uint8_t)(BankMask[idx_bk].ch2 & (~DisableMask[1])); // Mask for all 2nd channel are used by channels and sampling for this bank
CurrentBank[2] = (uint8_t)(BankMask[idx_bk].ch3 & (~DisableMask[2])); // Mask for all 3rd channel are used by channels and sampling for this bank
#if defined(STM8L15X_LD)
CurrentBank[3] = (uint8_t)(BankMask[idx_bk].ch4 & (~DisableMask[3])); // Mask for all 4th channel are used by channels and sampling for this bank
#endif // STM8L15X_LD
CurrentChannel = ChannelMask[idx_bk]; // Mask for channels
CurrentSampling = (uint8_t)(3 << (2 * (SamplingMask[idx_bk] - 1))); // Mask for sampling
// Channel's state of the current bank
BankDone = (uint8_t)(CurrentBank[ChannelSampling - 1] & (~DisableSampling));
// Select the Input register corresponding to the channel sampling (to optimize the measurement)
p_IOIRx = RI_IOIRx_Register[ChannelSampling - 1];
#else
//Get Mask for the current bank
CurrentBank[0] = (uint8_t)(BankMask[idx_bk].GPIOB_IO & (~DisableMask[0]));
CurrentBank[1] = (uint8_t)(BankMask[idx_bk].GPIOB_Samp & (~DisableMask[1]));
CurrentBank[2] = (uint8_t)(BankMask[idx_bk].GPIOD_IO & (~DisableMask[2]));
CurrentBank[3] = (uint8_t)(BankMask[idx_bk].GPIOD_Samp & (~DisableMask[3]));
CurrentChannel = (uint8_t)(Bank_IO_CompMask[idx_bk]); // Mask for channels
CurrentSampling = (uint8_t)(BankSamplingCompMask[idx_bk]); // Mask for sampling
// Select the Input register corresponding to the channel sampling (to optimize the measurement) and update BankDone, which is the mask where there are sampling capacitors
if (ChannelSampling > 2) // GPIOD
{
p_GPIOx_IDR = GPIOx_IDR[1];
if ((GroupUsed & 0x01) == 1)
{
BankDone |= (uint8_t)(1 << (ChannelSampling - 3));
}
if((GroupUsed & 0x02) == 2)
{
BankDone |= (uint8_t)(1 << (2 + (ChannelSampling - 3)));
}
}
else // GPIOB
{
p_GPIOx_IDR = GPIOx_IDR[0];
if ((GroupUsed & 0x01) == 1)
{
BankDone |= (uint8_t)(1 << (ChannelSampling - 1));
}
if ((GroupUsed & 0x02) == 2)
{
BankDone |= (uint8_t)(1 << (2 + (ChannelSampling - 1)));
}
}
#endif // !defined(STM8L10X)
return TSL_STATUS_OK;
}
#if !defined(STM8L10X)
/**
* @brief Start acquisition
* @param None
* @retval None
*/
void TSL_acq_BankStartAcq(void)
{
CONST TSL_Bank_T *p_bank = &(TSL_Globals.Bank_Array[0]);
CONST TSL_ChannelSrc_T *p_chSrc;
TSL_tNb_T number_of_channels = 0;
TSL_tIndex_T idx_bk;
TSL_tIndex_T idx_ch;
uint8_t step3, step5, deadtime1, deadtime2; //intermediate variables to speed-up the acquisition loop
uint8_t old_status = 0;
ChargeTransferCounter = 0;
#if (TSLPRM_IODEF > 0)
//============================
// All GPIOs in Input floating
//============================
for (idx_bk = 0; idx_bk < TSLPRM_TOTAL_BANKS; idx_bk++)
{
p_bank = &(TSL_Globals.Bank_Array[idx_bk]);
p_chSrc = p_bank->p_chSrc;
#if (TSLPRM_USE_SHIELD > 0)
// GPIO in floating mode
GPIO_CR1_FLOATING(p_bank->shield_sampling);
GPIO_CR1_FLOATING(p_bank->shield_channel);
// GPIO in Input
GPIO_DDR_IN(p_bank->shield_sampling);
GPIO_DDR_IN(p_bank->shield_channel);
#endif // TSLPRM_USE_SHIELD
number_of_channels = p_bank->NbChannels;
for (idx_ch = 0;
idx_ch < number_of_channels;
idx_ch++)
{
// GPIO in floating mode
GPIO_CR1_FLOATING(p_chSrc->sampling);
GPIO_CR1_FLOATING(p_chSrc->channel);
// GPIO in Input
GPIO_DDR_IN(p_chSrc->sampling);
GPIO_DDR_IN(p_chSrc->channel);
p_chSrc++;
}
}
#endif // TSLPRM_IODEF
// Test if this bank is not empty
if (BankDone != 0)
{
// Enable necessary IOs
RI->IOCMR1 |= (uint8_t)CurrentBank[0];
RI->IOCMR2 |= (uint8_t)CurrentBank[1];
RI->IOCMR3 |= (uint8_t)CurrentBank[2];
#if defined(STM8L15X_LD)
RI->IOCMR4 |= (uint8_t)CurrentBank[3];
#endif // STM8L15X_LD
RI->IOSR1 |= (uint8_t)CurrentBank[0];
RI->IOSR2 |= (uint8_t)CurrentBank[1];
RI->IOSR3 |= (uint8_t)CurrentBank[2];
#if defined(STM8L15X_LD)
RI->IOSR4 |= (uint8_t)CurrentBank[3];
#endif // STM8L15X_LD
/* STEP1 : Discharging all capacitors
==> all IOs in Push-Pull LOW */
RI->IOGCR &= (uint8_t)(~(CurrentChannel | CurrentSampling));
/* STEP2: Waiting for complete discharge */
SoftDelay(TSLPRM_DELAY_DISCHARGE_ALL);
// Dead Time
RI->IOGCR |= (uint8_t)(0xAA & (CurrentChannel | CurrentSampling));
// Close switch sampling
RI->IOGCR |= CurrentSampling;
/* Copmpute RI->IOGCR for each step */
/* STEP3: Charging C-Touch
==> Channels in Push-Pull HIGH
==> Sampling kept open */
step3 = (uint8_t)(RI->IOGCR ^ CurrentChannel);
/* Deadtime */
deadtime1 = RI->IOGCR ; // equivalent to step3 ^ (uint8_t)CurrentChannel;
/* STEP5: Transfering C-Touch charge in C-Sampling
==> Close IOs Switchs */
step5 = (uint8_t)(RI->IOGCR | CurrentChannel);
/* Deadtime */
deadtime2 = (uint8_t)(step5 & (0xAA | (~CurrentChannel)));
// Loop while all sampling have not reach the VIH level
do
{
/* STEP3: Charging C-Touch */
RI->IOGCR = step3;
// Get the measurement of counter if the value of Input register change
if ((*p_IOIRx & BankDone) != old_status)
{
GetCounter(p_IOIRx, &old_status);
}
/* STEP4 : Waiting for good chargement */
__Delay_Charge();
#if (TSLPRM_USE_SPREAD_SPECTRUM > 0)
SwSpreadSpectrum();
#endif
/* Dead Time */
RI->IOGCR = deadtime1;
/* STEP5: Transfering C-Touch charge in C-Sampling */
RI->IOGCR = step5;
ChargeTransferCounter++;
/* STEP6: Waiting for good transfer */
__Delay_Transfer();
/* Dead Time */
RI->IOGCR = deadtime1;
} while ((old_status != BankDone) && (ChargeTransferCounter <= TSL_Params.AcqMax));
// Get the value of counter if he reach the Max count
if(ChargeTransferCounter > TSL_Params.AcqMax)
{
GetCounter(&BankDone, &old_status);
}
// Disable necessary IOs
RI->IOSR1 &= (uint8_t)(~(CurrentBank[0]));
RI->IOSR2 &= (uint8_t)(~(CurrentBank[1]));
RI->IOSR3 &= (uint8_t)(~(CurrentBank[2]));
#if defined(STM8L15X_LD)
RI->IOSR4 &= (uint8_t)(~(CurrentBank[3]));
#endif
RI->IOCMR1 &= (uint8_t)(~(CurrentBank[0]));
RI->IOCMR2 &= (uint8_t)(~(CurrentBank[1]));
RI->IOCMR3 &= (uint8_t)(~(CurrentBank[2]));
#if defined(STM8L15X_LD)
RI->IOCMR4 &= (uint8_t)(~(CurrentBank[3]));
#endif
//====================
// All GPIOs in PP Low
//====================
for (idx_bk = 0; idx_bk < TSLPRM_TOTAL_BANKS;idx_bk++)
{
p_bank = &(TSL_Globals.Bank_Array[idx_bk]);
p_chSrc = p_bank->p_chSrc;
#if (TSLPRM_USE_SHIELD > 0)
// Output in Low level
GPIO_ODR_LOW(p_bank->shield_sampling);
GPIO_ODR_LOW(p_bank->shield_channel);
// GPIO in Output
GPIO_DDR_OUT(p_bank->shield_sampling);
GPIO_DDR_OUT(p_bank->shield_channel);
// GPIO in PP
GPIO_CR1_PP(p_bank->shield_sampling);
GPIO_CR1_PP(p_bank->shield_channel);
#endif // TSLPRM_USE_SHIELD
number_of_channels = p_bank->NbChannels;
for (idx_ch = 0;
idx_ch < number_of_channels;
idx_ch++)
{
// Output in Low level
GPIO_ODR_LOW(p_chSrc->sampling);
GPIO_ODR_LOW(p_chSrc->channel);
// GPIO in Output
GPIO_DDR_OUT(p_chSrc->sampling);
GPIO_DDR_OUT(p_chSrc->channel);
// GPIO in PP
GPIO_CR1_PP(p_chSrc->sampling);
GPIO_CR1_PP(p_chSrc->channel);
p_chSrc++;
}
}
}
}
#else // STM8L10X
/**
* @brief Start acquisition
* @param None
* @retval None
*/
void TSL_acq_BankStartAcq(void)
{
CONST TSL_Bank_T *p_bank = &(TSL_Globals.Bank_Array[0]);
CONST TSL_ChannelSrc_T *p_chSrc;
TSL_tNb_T number_of_channels = 0;
TSL_tIndex_T idx_bk;
TSL_tIndex_T idx_ch;
uint8_t old_status = 0;
ChargeTransferCounter = 0;
#if (TSLPRM_IODEF > 0)
//============================
// All GPIOs in Input floating
//============================
for (idx_bk = 0; idx_bk < TSLPRM_TOTAL_BANKS; idx_bk++)
{
p_bank = &(TSL_Globals.Bank_Array[idx_bk]);
p_chSrc = p_bank->p_chSrc;
#if (TSLPRM_USE_SHIELD > 0)
// GPIO in floating mode
GPIO_CR1_FLOATING(p_bank->shield_sampling);
GPIO_CR1_FLOATING(p_bank->shield_channel);
// GPIO in Input
GPIO_DDR_IN(p_bank->shield_sampling);
GPIO_DDR_IN(p_bank->shield_channel);
#endif
number_of_channels = p_bank->NbChannels;
for (idx_ch = 0;
idx_ch < number_of_channels;
idx_ch++)
{
// GPIO in floating mode
GPIO_CR1_FLOATING(p_chSrc->sampling);
GPIO_CR1_FLOATING(p_chSrc->channel);
// GPIO in Input
GPIO_DDR_IN(p_chSrc->sampling);
GPIO_DDR_IN(p_chSrc->channel);
p_chSrc++;
}
}
#endif // TSLPRM_IODEF
// Test if this bank is not empty
if (BankDone != 0)
{
#ifdef TSLPRM_PROTECT_IO_ACCESS
disableInterrupts();
#endif //TSLPRM_PROTECT_IO_ACCESS
/* STEP1 : Discharging all capacitors
==> all IOs in open-drain LOW */
GPIOB->ODR &= (uint8_t)(~(CurrentBank[0] | CurrentBank[1]));
GPIOB->CR1 &= (uint8_t)(~(CurrentBank[0] | CurrentBank[1]));
GPIOB->DDR |= (uint8_t)(CurrentBank[0] | CurrentBank[1]);
GPIOD->ODR &= (uint8_t)(~(CurrentBank[2] | CurrentBank[3]));
GPIOD->CR1 &= (uint8_t)(~(CurrentBank[2] | CurrentBank[3]));
GPIOD->DDR |= (uint8_t)(CurrentBank[2] | CurrentBank[3]);
#ifdef TSLPRM_PROTECT_IO_ACCESS
enableInterrupts();
#endif // TSLPRM_PROTECT_IO_ACCESS
COMP->CCS &= (uint8_t)(~(CurrentSampling |CurrentChannel));
/* STEP2: Waiting for complete discharge */
SoftDelay(TSLPRM_DELAY_DISCHARGE_ALL);
#ifdef TSLPRM_PROTECT_IO_ACCESS
disableInterrupts();
#endif // TSLPRM_PROTECT_IO_ACCESS
// Dead Time
GPIOB->DDR &= (uint8_t)(~(CurrentBank[0] | CurrentBank[1]));
GPIOD->DDR &= (uint8_t)(~(CurrentBank[2] | CurrentBank[3]));
#ifdef TSLPRM_PROTECT_IO_ACCESS
enableInterrupts();
#endif // TSLPRM_PROTECT_IO_ACCESS
GPIOB->ODR |= (uint8_t)(CurrentBank[0]);
GPIOD->ODR |= (uint8_t)(CurrentBank[2]);
// Loop while all sampling have not reach the VIH level
do
{
#ifdef TSLPRM_PROTECT_IO_ACCESS
disableInterrupts();
#endif // TSLPRM_PROTECT_IO_ACCESS
/* STEP3: Charging C-Touch
==> Channels in Push-Pull HIGH
==> Sampling kept open */
GPIOB->DDR |= (uint8_t)(CurrentBank[0]);
GPIOB->CR1 |= (uint8_t)(CurrentBank[0]);
GPIOD->DDR |= (uint8_t)(CurrentBank[2]);
GPIOD->CR1 |= (uint8_t)(CurrentBank[2]);
#ifdef TSLPRM_PROTECT_IO_ACCESS
enableInterrupts();
#endif // TSLPRM_PROTECT_IO_ACCESS
/* STEP4 : Waiting for good chargement */
__Delay_Charge();
#if (TSLPRM_USE_SPREAD_SPECTRUM > 0)
SwSpreadSpectrum();
#endif
#ifdef TSLPRM_PROTECT_IO_ACCESS
disableInterrupts();
#endif // TSLPRM_PROTECT_IO_ACCESS
// Dead Time
GPIOB->CR1 &= (uint8_t)(~(CurrentBank[0]));
GPIOB->DDR &= (uint8_t)(~(CurrentBank[0]));
GPIOD->CR1 &= (uint8_t)(~(CurrentBank[2]));
GPIOD->DDR &= (uint8_t)(~(CurrentBank[2]));
#ifdef TSLPRM_PROTECT_IO_ACCESS
enableInterrupts();
#endif // TSLPRM_PROTECT_IO_ACCESS
/* STEP5: Transfering C-Touch charge in C-Sampling
==> Close IOs Switchs */
// Close switch sampling
COMP->CCS |= (uint8_t)CurrentSampling;
COMP->CCS |= (uint8_t)CurrentChannel;
/* STEP6: Waiting for good transfer */
__Delay_Transfer();
//Dead Time
COMP->CCS &= (uint8_t)(~(CurrentChannel | CurrentSampling));
#ifdef TSLPRM_PROTECT_IO_ACCESS
disableInterrupts();
#endif // TSLPRM_PROTECT_IO_ACCESS
// Get the measurement of counter if the value of Input register change
if ((*p_GPIOx_IDR & BankDone) != old_status)
{
GetCounter(p_GPIOx_IDR, &old_status);
}
#ifdef TSLPRM_PROTECT_IO_ACCESS
enableInterrupts();
#endif // TSLPRM_PROTECT_IO_ACCESS
ChargeTransferCounter++;
} while ((old_status != BankDone) && (ChargeTransferCounter != (TSL_Params.AcqMax+1)));
// Get the value of counter if he reach the Max count
if(ChargeTransferCounter == (TSL_Params.AcqMax+1))
{
GetCounter(&BankDone, &old_status);
}
//====================
// All GPIOs in PP Low
//====================
for (idx_bk = 0; idx_bk < TSLPRM_TOTAL_BANKS;idx_bk++)
{
p_bank = &(TSL_Globals.Bank_Array[idx_bk]);
p_chSrc = p_bank->p_chSrc;
#if (TSLPRM_USE_SHIELD > 0)
// Output in Low level
GPIO_ODR_LOW(p_bank->shield_sampling);
GPIO_ODR_LOW(p_bank->shield_channel);
// GPIO in Output
GPIO_DDR_OUT(p_bank->shield_sampling);
GPIO_DDR_OUT(p_bank->shield_channel);
// GPIO in PP
GPIO_CR1_PP(p_bank->shield_sampling);
GPIO_CR1_PP(p_bank->shield_channel);
#endif // TSLPRM_USE_SHIELD
number_of_channels = p_bank->NbChannels;
for (idx_ch = 0;
idx_ch < number_of_channels;
idx_ch++)
{
// Output in Low level
GPIO_ODR_LOW(p_chSrc->sampling);
GPIO_ODR_LOW(p_chSrc->channel);
// GPIO in Output
GPIO_DDR_OUT(p_chSrc->sampling);
GPIO_DDR_OUT(p_chSrc->channel);
// GPIO in PP
GPIO_CR1_PP(p_chSrc->sampling);
GPIO_CR1_PP(p_chSrc->channel);
p_chSrc++;
}
}
}
}
#endif
/**
* @brief Do the measurement
* @param *p_reg Pointer to the Input register
* @param *p_old_status Pointer to the previous status value
* @retval None
*/
void GetCounter(__IO uint8_t *p_reg, uint8_t *p_old_status)
{
uint8_t new_status = 0;
uint8_t idx_i = 0;
uint8_t mask_i = 1;
#if defined(STM8L10X)
uint8_t idx_j = 4;
uint8_t idx_group = 0;
#else
uint8_t idx_j = 8;
#endif // defined(STM8L10X)
new_status = *p_reg;
new_status = (uint8_t)(new_status & BankDone & (~(*p_old_status)));
while ((new_status != 0) && (idx_i < idx_j))
{
if ((new_status & mask_i) != 0)
{
#if defined(STM8L10X)
tab_MeasurementCounter[idx_group]= ChargeTransferCounter;
#else
tab_MeasurementCounter[idx_i] = ChargeTransferCounter;
#endif // defined(STM8L10X)
*p_old_status |= mask_i;
new_status &= (uint8_t)(~mask_i);
}
idx_i++;
mask_i <<= 1;
#if defined(STM8L10X)
if (idx_i > 1)
{
idx_group = 1;
}
#endif // defined(STM8L10X)
}
}
/**
* @brief Wait end of acquisition
* @param None
* @retval status
*/
TSL_Status_enum_T TSL_acq_BankWaitEOC(void)
{
return TSL_STATUS_OK;
}
/**
* @brief Return the current measure
* @param[in] index Index of the measure source
* @retval Measure
*/
TSL_tMeas_T TSL_acq_GetMeas(TSL_tIndex_T index)
{
return(tab_MeasurementCounter[index]);
}
/**
* @brief Check noise (not used)
* @param None
* @retval Status
*/
TSL_AcqStatus_enum_T TSL_acq_CheckNoise(void)
{
return TSL_ACQ_STATUS_OK;
}
/**
* @brief Check if a filter must be used on the current channel (not used)
* @param[in] pCh Pointer on the channel data information
* @retval Result TRUE if a filter can be applied
*/
TSL_Bool_enum_T TSL_acq_UseFilter(TSL_ChannelData_T *pCh)
{
return TSL_TRUE;
}
/**
* @brief Compute the Delta value
* @param[in] ref Reference value
* @param[in] meas Last Measurement value
* @retval Delta value
*/
TSL_tDelta_T TSL_acq_ComputeDelta(TSL_tRef_T ref, TSL_tMeas_T meas)
{
return((TSL_tDelta_T)(ref - meas));
}
/**
* @brief Compute the Measurement value
* @param[in] ref Reference value
* @param[in] delta Delta value
* @retval Measurement value
*/
TSL_tMeas_T TSL_acq_ComputeMeas(TSL_tRef_T ref, TSL_tDelta_T delta)
{
return((TSL_tMeas_T)(ref - delta));
}
/**
* @brief Test if the Reference is incorrect (not used)
* @param[in] pCh Pointer on the channel data information
* @retval Result TRUE if the Reference is out of range
*/
TSL_Bool_enum_T TSL_acq_TestReferenceOutOfRange(TSL_ChannelData_T *pCh)
{
return TSL_FALSE;
}
/**
* @brief Test if the measure has crossed the reference target (not used)
* @param[in] pCh Pointer on the channel data information
* @param[in] new_meas Measure of the last acquisition on this channel
* @retval Result TRUE if the Reference is valid
*/
TSL_Bool_enum_T TSL_acq_TestFirstReferenceIsValid(TSL_ChannelData_T *pCh, TSL_tMeas_T new_meas)
{
return TSL_TRUE;
}
#if defined(__ICCSTM8__)
#pragma optimize=low
#endif
/**
* @brief Software delay (private routine)
* @param val Wait delay
* @retval None
*/
void SoftDelay(uint16_t val)
{
uint16_t idx;
for (idx = val; idx > 0; idx--)
{
nop();
}
}
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/