/**
******************************************************************************
* @file tsl_linrot.c
* @author MCD Application Team
* @version V1.4.4
* @date 31-March-2014
* @brief This file contains all functions to manage Linear and Rotary sensors.
******************************************************************************
* @attention
*
*
© COPYRIGHT 2014 STMicroelectronics
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "tsl_linrot.h"
#include "tsl_globals.h"
#if TSLPRM_TOTAL_LNRTS > 0
/* Private typedefs ----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
#define THIS_OBJ_TYPE TSL_Globals.This_Obj->Type
#define THIS_STATEID TSL_Globals.This_LinRot->p_Data->StateId
#define THIS_RAW_POSITION TSL_Globals.This_LinRot->p_Data->RawPosition
#define THIS_POSITION TSL_Globals.This_LinRot->p_Data->Position
#define THIS_CHANGE TSL_Globals.This_LinRot->p_Data->Change
#define THIS_POSCHANGE TSL_Globals.This_LinRot->p_Data->PosChange
#define THIS_COUNTER_DEB TSL_Globals.This_LinRot->p_Data->CounterDebounce
#define THIS_COUNTER_DIR TSL_Globals.This_LinRot->p_Data->CounterDirection
#define THIS_COUNTER_DTO TSL_Globals.This_LinRot->p_Data->CounterDTO
#define THIS_DXSLOCK TSL_Globals.This_LinRot->p_Data->DxSLock
#define THIS_DIRECTION TSL_Globals.This_LinRot->p_Data->Direction
#define THIS_PROXIN_TH TSL_Globals.This_LinRot->p_Param->ProxInTh
#define THIS_PROXOUT_TH TSL_Globals.This_LinRot->p_Param->ProxOutTh
#define THIS_DETECTIN_TH TSL_Globals.This_LinRot->p_Param->DetectInTh
#define THIS_DETECTOUT_TH TSL_Globals.This_LinRot->p_Param->DetectOutTh
#define THIS_CALIB_TH TSL_Globals.This_LinRot->p_Param->CalibTh
#define THIS_RESOLUTION TSL_Globals.This_LinRot->p_Param->Resolution
#define THIS_DIR_CHG_POS TSL_Globals.This_LinRot->p_Param->DirChangePos
#define THIS_COUNTER_DEB_CALIB TSL_Globals.This_LinRot->p_Param->CounterDebCalib
#define THIS_COUNTER_DEB_PROX TSL_Globals.This_LinRot->p_Param->CounterDebProx
#define THIS_COUNTER_DEB_DETECT TSL_Globals.This_LinRot->p_Param->CounterDebDetect
#define THIS_COUNTER_DEB_RELEASE TSL_Globals.This_LinRot->p_Param->CounterDebRelease
#define THIS_COUNTER_DEB_ERROR TSL_Globals.This_LinRot->p_Param->CounterDebError
#define THIS_COUNTER_DEB_DIRECTION TSL_Globals.This_LinRot->p_Param->CounterDebDirection
#define THIS_NB_CHANNELS TSL_Globals.This_LinRot->NbChannels
#define THIS_SCT_COMP TSL_Globals.This_LinRot->SctComp
#define THIS_POS_CORR TSL_Globals.This_LinRot->PosCorr
#if TSLPRM_DTO > 0
#define DTO_GET_TIME {TSL_linrot_DTOGetTime();}
#else
#define DTO_GET_TIME
#endif
/* Private variables ---------------------------------------------------------*/
//================================================================
// See AN2869 for more details on Linear and Rotary sensors design
//================================================================
//==============================================================================
// 3 CHANNELS - LINEAR - MONO - 0/255 at extremities
// i.e. CH1 CH2 CH3
//==============================================================================
#if TSLPRM_USE_3CH_LIN_M1 > 0
CONST TSL_tsignPosition_T TSL_POSOFF_3CH_LIN_M1[3][3] =
{
// sec = 1 2 3
// j = 0 1 2
{ 0, -96, 0 }, // maj = 1; i = 0
{ 32, 0, -160 }, // maj = 2; i = 1
{ 0, 96, 0 } // maj = 3; i = 2
};
#endif
//==============================================================================
// 3 CHANNELS - LINEAR - MONO
// i.e. CH1 CH2 CH3
//==============================================================================
#if TSLPRM_USE_3CH_LIN_M2 > 0
CONST TSL_tsignPosition_T TSL_POSOFF_3CH_LIN_M2[3][3] =
{
// sec = 1 2 3
// j = 0 1 2
{ 0, -192, 0 }, // maj = 1; i = 0
{ 64, 0, -320 }, // maj = 2; i = 1
{ 0, 192, 0 } // maj = 3; i = 2
};
#endif
//==============================================================================
// 3 CHANNELS - LINEAR - HALF-ENDED
// i.e. CH1 CH2 CH3 CH1
//==============================================================================
#if TSLPRM_USE_3CH_LIN_H > 0
CONST TSL_tsignPosition_T TSL_POSOFF_3CH_LIN_H[3][3] =
{
// sec = 1 2 3
// j = 0 1 2
{ 0, -96, 160 }, // maj = 1; i = 0
{ 32, 0, -160 }, // maj = 2; i = 1
{ -224, 96, 0 } // maj = 3; i = 2
};
#endif
//==============================================================================
// 3 CHANNELS - ROTARY - MONO
// i.e. CH1 CH2 CH3
//==============================================================================
#if TSLPRM_USE_3CH_ROT_M > 0
CONST TSL_tsignPosition_T TSL_POSOFF_3CH_ROT_M[3][3] =
{
// sec = 1 2 3
// j = 0 1 2
{ 0, -64, 107 }, // maj = 1; i = 0
{ 21, 0, -107 }, // maj = 2; i = 1
{ -149, 64, 0 } // maj = 3; i = 2
};
#endif
//==============================================================================
// 4 CHANNELS - LINEAR - MONO - 0/255 at extremities
// i.e. CH1 CH2 CH3 CH4
//==============================================================================
#if TSLPRM_USE_4CH_LIN_M1 > 0
CONST TSL_tsignPosition_T TSL_POSOFF_4CH_LIN_M1[4][4] =
{
// sec = 1 2 3 4
// j = 0 1 2 3
{ 0, -64, 0, 0 }, // maj = 1; i = 0
{ 21, 0, -107, 0 }, // maj = 2; i = 1
{ 0, 64, 0, -149 }, // maj = 3; i = 2
{ 0, 0, 107, 0 } // maj = 4; i = 3
};
#endif
//==============================================================================
// 4 CHANNELS - LINEAR - MONO
// i.e. CH1 CH2 CH3 CH4
//==============================================================================
#if TSLPRM_USE_4CH_LIN_M2 > 0
CONST TSL_tsignPosition_T TSL_POSOFF_4CH_LIN_M2[4][4] =
{
// sec = 1 2 3 4
// j = 0 1 2 3
{ 0, -96, 0, 0 }, // maj = 1; i = 0
{ 32, 0, -160, 0 }, // maj = 2; i = 1
{ 0, 96, 0, -224 }, // maj = 3; i = 2
{ 0, 0, 160, 0 } // maj = 4; i = 3
};
#endif
//==============================================================================
// 4 CHANNELS - LINEAR - HALF-ENDED
// i.e. CH1 CH2 CH3 CH4 CH1
//==============================================================================
#if TSLPRM_USE_4CH_LIN_H > 0
CONST TSL_tsignPosition_T TSL_POSOFF_4CH_LIN_H[4][4] =
{
// sec = 1 2 3 4
// j = 0 1 2 3
{ 0, -64, 0, 149 }, // maj = 1; i = 0
{ 21, 0, -107, 0 }, // maj = 2; i = 1
{ 0, 64, 0, -149 }, // maj = 3; i = 2
{ -192, 0, 107, 0 } // maj = 4; i = 3
};
#endif
//==============================================================================
// 4 CHANNELS - ROTARY - MONO
// i.e. CH1 CH2 CH3 CH4
//==============================================================================
#if TSLPRM_USE_4CH_ROT_M > 0
CONST TSL_tsignPosition_T TSL_POSOFF_4CH_ROT_M[4][4] =
{
// sec = 1 2 3 4
// j = 0 1 2 3
{ 0, -48, 0, 112 }, // maj = 1; i = 0
{ 16, 0, -80, 0 }, // maj = 2; i = 1
{ 0, 48, 0, -112 }, // maj = 3; i = 2
{ -144, 0, 80, 0 } // maj = 4; i = 3
};
#endif
//==============================================================================
// 5 CHANNELS - LINEAR - MONO - 0/255 at extremities
// i.e. CH1 CH2 CH3 CH4 CH5
//==============================================================================
#if TSLPRM_USE_5CH_LIN_M1 > 0
CONST TSL_tsignPosition_T TSL_POSOFF_5CH_LIN_M1[5][5] =
{
// sec = 1 2 3 4 5
// j = 0 1 2 3 4
{ 0, -48, 0, 0, 0 }, // maj = 1; i = 0
{ 16, 0, -80, 0, 0 }, // maj = 2; i = 1
{ 0, 48, 0, -112, 0 }, // maj = 3; i = 2
{ 0, 0, 80, 0, -144 }, // maj = 4; i = 3
{ 0, 0, 0, 112, 0 } // maj = 5; i = 4
};
#endif
//==============================================================================
// 5 CHANNELS - LINEAR - MONO
// i.e. CH1 CH2 CH3 CH4 CH5
//==============================================================================
#if TSLPRM_USE_5CH_LIN_M2 > 0
CONST TSL_tsignPosition_T TSL_POSOFF_5CH_LIN_M2[5][5] =
{
// sec = 1 2 3 4 5
// j = 0 1 2 3 4
{ 0, -64, 0, 0, 0 }, // maj = 1; i = 0
{ 21, 0, -107, 0, 0 }, // maj = 2; i = 1
{ 0, 64, 0, -149, 0 }, // maj = 3; i = 2
{ 0, 0, 107, 0, -192 }, // maj = 4; i = 3
{ 0, 0, 0, 149, 0 } // maj = 5; i = 4
};
#endif
//==============================================================================
// 5 CHANNELS - LINEAR - HALF-ENDED
// i.e. CH1 CH2 CH3 CH4 CH5 CH1
//==============================================================================
#if TSLPRM_USE_5CH_LIN_H > 0
CONST TSL_tsignPosition_T TSL_POSOFF_5CH_LIN_H[5][5] =
{
// sec = 1 2 3 4 5
// j = 0 1 2 3 4
{ 0, -48, 0, 0, 144 }, // maj = 1; i = 0
{ 16, 0, -80, 0, 0 }, // maj = 2; i = 1
{ 0, 48, 0, -112, 0 }, // maj = 3; i = 2
{ 0, 0, 80, 0, -144 }, // maj = 4; i = 3
{ -176, 0, 0, 112, 0 } // maj = 5; i = 4
};
#endif
//==============================================================================
// 5 CHANNELS - ROTARY - MONO
// i.e. CH1 CH2 CH3 CH4 CH5
//==============================================================================
#if TSLPRM_USE_5CH_ROT_M > 0
CONST TSL_tsignPosition_T TSL_POSOFF_5CH_ROT_M[5][5] =
{
// sec = 1 2 3 4 5
// j = 0 1 2 3 4
{ 0, -38, 0, 0, 115 }, // maj = 1; i = 0
{ 13, 0, -64, 0, 0 }, // maj = 2; i = 1
{ 0, 38, 0, -90, 0 }, // maj = 3; i = 2
{ 0, 0, 64, 0, -115 }, // maj = 4; i = 3
{-141, 0, 0, 90, 0 } // maj = 5; i = 4
};
#endif
//==============================================================================
// 5 CHANNELS - ROTARY - DUAL
// i.e. CH1 CH2 CH3 CH4 CH5 CH1 CH3 CH5 CH2 CH4
//==============================================================================
#if TSLPRM_USE_5CH_ROT_D > 0
CONST TSL_tsignPosition_T TSL_POSOFF_5CH_ROT_D[5][5] =
{
// sec = 1 2 3 4 5
// j = 0 1 2 3 4
{ 0, -19, -83, 122, 58 }, // maj = 1; i = 0
{ 6, 0, -32, -122, 96 }, // maj = 2; i = 1
{ 70, 19, 0, -45, -96 }, // maj = 3; i = 2
{-134, 109, 32, 0, -58 }, // maj = 4; i = 3
{ -70, -109, 83, 45, 0 } // maj = 5; i = 4
};
#endif
//==============================================================================
// 6 CHANNELS - LINEAR - MONO - 0/255 at extremities
// i.e. CH1 CH2 CH3 CH4 CH5 CH6
//==============================================================================
#if TSLPRM_USE_6CH_LIN_M1 > 0
CONST TSL_tsignPosition_T TSL_POSOFF_6CH_LIN_M1[6][6] =
{
// sec = 1 2 3 4 5 6
// j = 0 1 2 3 4 5
{ 0, -38, 0, 0, 0, 0 }, // maj = 1; i = 0
{ 13, 0, -64, 0, 0, 0 }, // maj = 2; i = 1
{ 0, 38, 0, -90, 0, 0 }, // maj = 3; i = 2
{ 0, 0, 64, 0, -115, 0 }, // maj = 4; i = 3
{ 0, 0, 0, 90, 0, -141 }, // maj = 5; i = 4
{ 0, 0, 0, 0, 115, 0 } // maj = 6; i = 5
};
#endif
//==============================================================================
// 6 CHANNELS - LINEAR - MONO
// i.e. CH1 CH2 CH3 CH4 CH5 CH6
//==============================================================================
#if TSLPRM_USE_6CH_LIN_M2 > 0
CONST TSL_tsignPosition_T TSL_POSOFF_6CH_LIN_M2[6][6] =
{
// sec = 1 2 3 4 5 6
// j = 0 1 2 3 4 5
{ 0, -48, 0, 0, 0, 0 }, // maj = 1; i = 0
{ 16, 0, -80, 0, 0, 0 }, // maj = 2; i = 1
{ 0, 48, 0, -112, 0, 0 }, // maj = 3; i = 2
{ 0, 0, 80, 0, -144, 0 }, // maj = 4; i = 3
{ 0, 0, 0, 112, 0, -176 }, // maj = 5; i = 4
{ 0, 0, 0, 0, 144, 0 } // maj = 6; i = 5
};
#endif
//==============================================================================
// 6 CHANNELS - LINEAR - HALF-ENDED
// i.e. CH1 CH2 CH3 CH4 CH5 CH6 CH1
//==============================================================================
#if TSLPRM_USE_6CH_LIN_H > 0
CONST TSL_tsignPosition_T TSL_POSOFF_6CH_LIN_H[6][6] =
{
// sec = 1 2 3 4 5 6
// j = 0 1 2 3 4 5
{ 0, -38, 0, 0, 0, 141 }, // maj = 1; i = 0
{ 13, 0, -64, 0, 0, 0 }, // maj = 2; i = 1
{ 0, 38, 0, -90, 0, 0 }, // maj = 3; i = 2
{ 0, 0, 64, 0, -115, 0 }, // maj = 4; i = 3
{ 0, 0, 0, 90, 0, -141 }, // maj = 5; i = 4
{-166, 0, 0, 0, 115, 0 } // maj = 6; i = 5
};
#endif
//==============================================================================
// 6 CHANNELS - ROTARY - MONO
// i.e. CH1 CH2 CH3 CH4 CH5 CH6
//==============================================================================
#if TSLPRM_USE_6CH_ROT_M > 0
CONST TSL_tsignPosition_T TSL_POSOFF_6CH_ROT_M[6][6] =
{
// sec = 1 2 3 4 5 6
// j = 0 1 2 3 4 5
{ 0, -32, 0, 0, 0, 117 }, // maj = 1; i = 0
{ 11, 0, -53, 0, 0, 0 }, // maj = 2; i = 1
{ 0, 32, 0, -75, 0, 0 }, // maj = 3; i = 2
{ 0, 0, 53, 0, -96, 0 }, // maj = 4; i = 3
{ 0, 0, 0, 75, 0, -117 }, // maj = 5; i = 4
{-139, 0, 0, 0, 96, 0 } // maj = 6; i = 5
};
#endif
//------------------
// Common parameters
//------------------
#define DIRECTION_CHANGE_MAX_DISPLACEMENT (255)
#define DIRECTION_CHANGE_TOTAL_STEPS (256)
#define RESOLUTION_CALCULATION (8)
static TSL_tNb_T CalibDiv;
/* Private functions prototype -----------------------------------------------*/
void TSL_linrot_DTOGetTime(void);
void TSL_linrot_ProcessCh_All_SetStatus(TSL_ObjStatus_enum_T sts);
TSL_Status_enum_T TSL_linrot_ProcessCh_One_DataReady(void);
TSL_Status_enum_T TSL_linrot_ProcessCh_All_AcqStatus(TSL_AcqStatus_enum_T sts);
TSL_Status_enum_T TSL_linrot_ProcessCh_One_AcqStatusError(void);
TSL_Status_enum_T TSL_linrot_ProcessCh_One_DeltaBelowEquMinus(TSL_tThreshold_T th, TSL_tIndex_T coeff);
TSL_Status_enum_T TSL_linrot_ProcessCh_One_DeltaAboveEqu(TSL_tThreshold_T th, TSL_tIndex_T coeff);
TSL_Status_enum_T TSL_linrot_ProcessCh_One_DeltaAbove(TSL_tThreshold_T th, TSL_tIndex_T coeff);
TSL_Status_enum_T TSL_linrot_ProcessCh_All_DeltaBelowEqu(TSL_tThreshold_T th, TSL_tIndex_T coeff);
void TSL_linrot_ProcessCh_All_ClearRef(void);
TSL_tDelta_T TSL_linrot_NormDelta(TSL_ChannelData_T *ch, TSL_tIndex_T idx);
//==============================================================================
// "Object methods" functions
//==============================================================================
/**
* @brief Init parameters with default values from configuration file
* @param None
* @retval None
*/
void TSL_linrot_Init(void)
{
// Thresholds
#if TSLPRM_USE_PROX > 0
THIS_PROXIN_TH = TSLPRM_LINROT_PROX_IN_TH;
THIS_PROXOUT_TH = TSLPRM_LINROT_PROX_OUT_TH;
#endif
THIS_DETECTIN_TH = TSLPRM_LINROT_DETECT_IN_TH;
THIS_DETECTOUT_TH = TSLPRM_LINROT_DETECT_OUT_TH;
THIS_CALIB_TH = TSLPRM_LINROT_CALIB_TH;
// Debounce counters
THIS_COUNTER_DEB_CALIB = TSLPRM_DEBOUNCE_CALIB;
#if TSLPRM_USE_PROX > 0
THIS_COUNTER_DEB_PROX = TSLPRM_DEBOUNCE_PROX;
#endif
THIS_COUNTER_DEB_DETECT = TSLPRM_DEBOUNCE_DETECT;
THIS_COUNTER_DEB_RELEASE = TSLPRM_DEBOUNCE_RELEASE;
THIS_COUNTER_DEB_ERROR = TSLPRM_DEBOUNCE_ERROR;
// Other parameters for linear/rotary only
THIS_RESOLUTION = TSLPRM_LINROT_RESOLUTION;
THIS_DIR_CHG_POS = TSLPRM_LINROT_DIR_CHG_POS;
THIS_COUNTER_DEB_DIRECTION = TSLPRM_LINROT_DIR_CHG_DEB;
// Initial state
TSL_linrot_SetStateCalibration(TSLPRM_CALIB_DELAY);
}
/**
* @brief Process the State Machine
* @param None
* @retval None
*/
void TSL_linrot_Process(void)
{
TSL_StateId_enum_T prev_state_id;
// Check if at least one channel has a data ready
if ((TSL_linrot_ProcessCh_One_DataReady() == TSL_STATUS_OK) || (THIS_STATEID == TSL_STATEID_OFF))
{
prev_state_id = THIS_STATEID;
#if TSLPRM_TOTAL_LINROTS > 0
if ((TSL_Globals.This_Obj->Type == TSL_OBJ_LINEAR) ||
(TSL_Globals.This_Obj->Type == TSL_OBJ_ROTARY))
{
// Launch the object state function
TSL_Globals.This_LinRot->p_SM[THIS_STATEID].StateFunc();
}
#endif
#if TSLPRM_TOTAL_LINROTS_B > 0
if ((TSL_Globals.This_Obj->Type == TSL_OBJ_LINEARB) ||
(TSL_Globals.This_Obj->Type == TSL_OBJ_ROTARYB))
{
// Launch the TSL_Params state function
TSL_Params.p_LinRotSM[THIS_STATEID].StateFunc();
}
#endif
// Check if the new state has changed
if (THIS_STATEID == prev_state_id)
{
THIS_CHANGE = TSL_STATE_NOT_CHANGED;
}
else
{
THIS_CHANGE = TSL_STATE_CHANGED;
}
#if TSLPRM_USE_DXS > 0
if (THIS_STATEID != TSL_STATEID_DETECT)
{
THIS_DXSLOCK = TSL_FALSE;
}
if (THIS_STATEID == TSL_STATEID_TOUCH)
{
THIS_STATEID = TSL_STATEID_DETECT;
}
#endif
}
}
/**
* @brief Calculate the position
* @param None
* @retval Status Return OK if position calculation is correct
* @note The position is calculated only if the number of channels is greater than 2
*/
TSL_Status_enum_T TSL_linrot_CalcPos(void)
{
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch = TSL_Globals.This_LinRot->p_ChD;
TSL_tDelta_T norm_delta;
static TSL_tDelta_T delta1;
static TSL_tDelta_T delta2;
static TSL_tDelta_T delta3;
static TSL_tIndex_T index1;
static TSL_tIndex_T index2;
TSL_tNb_T minor;
TSL_tNb_T major;
TSL_tNb_T sector_computation = 0;
TSL_tNb_T position_correction = 0;
TSL_tsignPosition_T new_position = 0;
TSL_tPosition_T u_new_position = 0;
delta1 = 0;
delta2 = 0;
delta3 = 0;
index1 = 0;
index2 = 0;
// The position change flag will be set only if a new position is detected.
THIS_POSCHANGE = TSL_STATE_NOT_CHANGED;
// The position is calculated only if the number of channels is greater than 2
if (THIS_NB_CHANNELS < 3)
{
return TSL_STATUS_ERROR;
}
//--------------------------------------------------------------------------
// Sort the channels' delta
// - delta1 and index1 = biggest
// - delta2 and index2 = middle
// - delta3 and index3 = lowest
//--------------------------------------------------------------------------
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
#if TSLPRM_LINROT_USE_NORMDELTA > 0
norm_delta = TSL_linrot_NormDelta(p_Ch, idx); // Normalize the Delta
#else
norm_delta = p_Ch->Delta; // Take only the Delta
#endif
// The Delta must be positive only otherwise it is noise
if (norm_delta < 0) {norm_delta = 0;}
if (norm_delta > delta1)
{
delta3 = delta2;
delta2 = delta1;
delta1 = norm_delta;
index2 = index1;
index1 = idx;
}
else
{
if (norm_delta > delta2)
{
delta3 = delta2;
delta2 = norm_delta;
index2 = idx;
}
else
{
if (norm_delta > delta3)
{
delta3 = norm_delta;
}
}
}
p_Ch++; // Next channel
} // for all channels
// Noise filter: we need at least two significant Delta measurements
if (delta2 < ((TSL_tThreshold_T)(THIS_DETECTOUT_TH >> 1) - 1))
{
return TSL_STATUS_ERROR;
}
//----------------------------------------------------------------------------
// Position calculation...
//----------------------------------------------------------------------------
/*----------------------------------------------------------------------------
B = Biggest signal measured (Delta1/Index1)
M = Middle signal measured (Delta2/Index2)
S = Smallest signal measured (Delta3/Index3)
- The equation to find the position is:
Position = Offset +/- [ Sector_Size x ( Major / (Major + Minor) ) ]
- The Offset is the position of the middle of the Middle signal segment.
All the Offset values are stored in the ROM table Table_POSITION_OFFSET.
- Major = Biggest - Smallest signals
Minor = Middle - Smallest signals
- The Sector_Size depends of the number of channels used
----------------------------------------------------------------------------*/
// Calculates the Major and Minor parameters
minor = (TSL_tNb_T)(delta2 - delta3); // Middle - Smallest signals
major = (TSL_tNb_T)(delta1 - delta3); // Biggest - Smallest signals
// Select the offset position in the position offset constant table
// Equal to: new_position = TABLE_POSITION_OFFSET_xCH_xxx[index1][index2];
new_position = *(TSL_Globals.This_LinRot->p_PosOff + (index1 * THIS_NB_CHANNELS) + index2);
sector_computation = THIS_SCT_COMP;
position_correction = THIS_POS_CORR;
// Calculates: [ Sector_Size x ( Major / (Major + Minor) ) ]
sector_computation = major * sector_computation;
sector_computation = sector_computation / (major + minor);
// Use the sign bit from position table to define the interpretation direction.
// The NewPosition is multiplied by 2 because the Offset stored in the ROM
// table is divided by 2...
if (new_position > 0) // Means Offset is > 0 in the position table
{
new_position = (TSL_tsignPosition_T)(new_position << 1);
new_position += sector_computation;
}
else // means Offset is <= 0 in the ROM table
{
new_position = (TSL_tsignPosition_T)((-new_position) << 1);
new_position -= sector_computation;
}
// Position is calculated differently if LINEAR or ROTARY sensor
if ((THIS_OBJ_TYPE == TSL_OBJ_LINEAR) || (THIS_OBJ_TYPE == TSL_OBJ_LINEARB))
{
// First adjustment used to shift all the values to obtain the "zero"
if (new_position > 0)
{
new_position -= position_correction;
}
else
{
new_position = new_position + (256 - position_correction);
}
// Second adjustment used to clamp the values at both ends of sensor
if (new_position < 0)
{
new_position = 0;
}
if (new_position > 255)
{
new_position = 255;
}
}
else // ROTARY sensor: keep only the low byte
{
new_position = (TSL_tPosition_T)new_position;
}
//----------------------------------------------------------------------------
// Direction Change Process
//----------------------------------------------------------------------------
if (THIS_DIRECTION == TSL_TRUE) // Anticlockwise direction ...
{
// Check Direction changed and Position overflow from 0x00 to 0xFF not realized !
if (((TSL_tPosition_T)new_position > THIS_RAW_POSITION) && (((TSL_tPosition_T)new_position - THIS_RAW_POSITION) < DIRECTION_CHANGE_MAX_DISPLACEMENT))
{
if (new_position < (uint16_t)(THIS_RAW_POSITION + THIS_DIR_CHG_POS))
{
THIS_COUNTER_DIR = THIS_COUNTER_DEB_DIRECTION;
return TSL_STATUS_ERROR;
}
else
{
THIS_COUNTER_DIR--;
if (!THIS_COUNTER_DIR)
{
THIS_COUNTER_DIR = THIS_COUNTER_DEB_DIRECTION;
THIS_DIRECTION = TSL_FALSE; // New direction accepted: clockwise.
}
else
{
return TSL_STATUS_ERROR;
}
}
}
// Check position overflow from 0xFF to 0x00 to be filtered !
if ((new_position + DIRECTION_CHANGE_MAX_DISPLACEMENT) < THIS_RAW_POSITION)
{
if ((new_position + DIRECTION_CHANGE_TOTAL_STEPS) < (uint16_t)(THIS_RAW_POSITION + THIS_DIR_CHG_POS))
{
THIS_COUNTER_DIR = THIS_COUNTER_DEB_DIRECTION;
return TSL_STATUS_ERROR;
}
else
{
THIS_COUNTER_DIR--;
if (!THIS_COUNTER_DIR)
{
THIS_COUNTER_DIR = THIS_COUNTER_DEB_DIRECTION;
THIS_DIRECTION = TSL_FALSE; // New direction accepted: clockwise.
}
else
{
return TSL_STATUS_ERROR;
}
}
}
}
else // Clockwise direction... DEFAULT SETTING !
{
// Check Direction changed and Position overflow from 0xFF to 0x00 not realized !
if (((TSL_tPosition_T)new_position < THIS_RAW_POSITION) && ((THIS_RAW_POSITION - (TSL_tPosition_T)new_position) < DIRECTION_CHANGE_MAX_DISPLACEMENT))
{
if ((new_position + THIS_DIR_CHG_POS) > THIS_RAW_POSITION)
{
THIS_COUNTER_DIR = THIS_COUNTER_DEB_DIRECTION;
return TSL_STATUS_ERROR;
}
else
{
THIS_COUNTER_DIR--;
if (!THIS_COUNTER_DIR)
{
THIS_COUNTER_DIR = THIS_COUNTER_DEB_DIRECTION;
THIS_DIRECTION = TSL_TRUE; // New direction accepted: anticlockwise.
}
else
{
return TSL_STATUS_ERROR;
}
}
}
// Check position overflow from 0x00 to 0xFF to be filtered !
if (new_position > (uint16_t)(THIS_RAW_POSITION + DIRECTION_CHANGE_MAX_DISPLACEMENT))
{
if ((new_position + THIS_DIR_CHG_POS) > (uint16_t)(THIS_RAW_POSITION + DIRECTION_CHANGE_TOTAL_STEPS))
{
THIS_COUNTER_DIR = THIS_COUNTER_DEB_DIRECTION;
return TSL_STATUS_ERROR;
}
else
{
THIS_COUNTER_DIR--;
if (!THIS_COUNTER_DIR)
{
THIS_COUNTER_DIR = THIS_COUNTER_DEB_DIRECTION;
THIS_DIRECTION = TSL_TRUE; // New direction accepted: anticlockwise.
}
else
{
return TSL_STATUS_ERROR;
}
}
}
}
//----------------------------------------------------------------------------
// Final result...
//----------------------------------------------------------------------------
// The Raw Position is always updated
// The Position is updated only if different from the previous one
THIS_RAW_POSITION = (TSL_tPosition_T)new_position;
u_new_position = (TSL_tPosition_T)((TSL_tPosition_T)new_position >> (RESOLUTION_CALCULATION - THIS_RESOLUTION));
if (THIS_POSITION == u_new_position)
{
return TSL_STATUS_ERROR;
}
else
{
THIS_POSITION = u_new_position;
THIS_POSCHANGE = TSL_STATE_CHANGED;
return TSL_STATUS_OK;
}
}
//==============================================================================
// Utility functions
//==============================================================================
/**
* @brief Go in Calibration state
* @param[in] delay Delay before calibration starts (stabilization of noise filter)
* @retval None
*/
void TSL_linrot_SetStateCalibration(TSL_tCounter_T delay)
{
THIS_STATEID = TSL_STATEID_CALIB;
THIS_CHANGE = TSL_STATE_CHANGED;
TSL_linrot_ProcessCh_All_SetStatus(TSL_OBJ_STATUS_ON);
switch (TSL_Params.NbCalibSamples)
{
case 4:
CalibDiv = 2;
break;
case 16:
CalibDiv = 4;
break;
default:
TSL_Params.NbCalibSamples = 8;
CalibDiv = 3;
break;
}
// If a noise filter is used, the counter must be initialized to a value
// different from 0 in order to stabilize the filter.
THIS_COUNTER_DEB = (TSL_tCounter_T)(delay + (TSL_tCounter_T)TSL_Params.NbCalibSamples);
TSL_linrot_ProcessCh_All_ClearRef();
}
/**
* @brief Go in Off state with sensor "off"
* @param None
* @retval None
*/
void TSL_linrot_SetStateOff(void)
{
THIS_STATEID = TSL_STATEID_OFF;
THIS_CHANGE = TSL_STATE_CHANGED;
TSL_linrot_ProcessCh_All_SetStatus(TSL_OBJ_STATUS_OFF);
}
#if !defined(TSLPRM_STM8TL5X) && !defined(STM8TL5X)
/**
* @brief Go in Off state with sensor in "Burst mode only"
* @param None
* @retval None
*/
void TSL_linrot_SetStateBurstOnly(void)
{
THIS_STATEID = TSL_STATEID_OFF;
THIS_CHANGE = TSL_STATE_CHANGED;
TSL_linrot_ProcessCh_All_SetStatus(TSL_OBJ_STATUS_BURST_ONLY);
}
#endif
/**
* @brief Return the current state identifier
* @param None
* @retval State id
*/
TSL_StateId_enum_T TSL_linrot_GetStateId(void)
{
return(THIS_STATEID);
}
/**
* @brief Return the current state mask
* @param None
* @retval State mask
*/
TSL_StateMask_enum_T TSL_linrot_GetStateMask(void)
{
TSL_StateMask_enum_T state_mask = TSL_STATEMASK_UNKNOWN;
#if TSLPRM_TOTAL_LINROTS > 0
if ((TSL_Globals.This_Obj->Type == TSL_OBJ_LINEAR) ||
(TSL_Globals.This_Obj->Type == TSL_OBJ_ROTARY))
{
state_mask = TSL_Globals.This_LinRot->p_SM[THIS_STATEID].StateMask;
}
#endif
#if TSLPRM_TOTAL_LINROTS_B > 0
if ((TSL_Globals.This_Obj->Type == TSL_OBJ_LINEARB) ||
(TSL_Globals.This_Obj->Type == TSL_OBJ_ROTARYB))
{
state_mask = TSL_Params.p_LinRotSM[THIS_STATEID].StateMask;
}
#endif
return state_mask;
}
/**
* @brief Return the Change flag
* @param None
* @retval Change flag status
*/
TSL_tNb_T TSL_linrot_IsChanged(void)
{
return(THIS_CHANGE);
}
//==============================================================================
// State machine functions
//==============================================================================
#if TSLPRM_USE_PROX > 0
/**
* @brief Debounce Release processing (previous state = Proximity)
* @param None
* @retval None
*/
void TSL_linrot_DebReleaseProxStateProcess(void)
{
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_STATEID = TSL_STATEID_PROX; // Go back to the previous state
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_PROXOUT_TH, 0) == TSL_STATUS_OK)
{
THIS_STATEID = TSL_STATEID_PROX; // Go back to the previous state
}
else
{
if (THIS_COUNTER_DEB > 0) {THIS_COUNTER_DEB--;}
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
// else stay in Debounce Release
}
}
}
#endif // if TSLPRM_USE_PROX > 0
/**
* @brief Debounce Release processing (previous state = Detect)
* @param None
* @retval None
*/
void TSL_linrot_DebReleaseDetectStateProcess(void)
{
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_STATEID = TSL_STATEID_DETECT; // Go back to the previous state
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_DETECTOUT_TH, 1) == TSL_STATUS_OK)
{
THIS_STATEID = TSL_STATEID_DETECT;
}
else
{
#if TSLPRM_USE_PROX > 0
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_PROXOUT_TH, 0) == TSL_STATUS_OK)
{
THIS_STATEID = TSL_STATEID_PROX;
return;
}
#endif
if (THIS_COUNTER_DEB > 0) {THIS_COUNTER_DEB--;}
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
// else stay in Debounce Release
}
}
}
/**
* @brief Debounce Release processing (previous state = Touch)
* Same as Debounce Release Detect processing
* @param None
* @retval None
*/
void TSL_linrot_DebReleaseTouchStateProcess(void)
{
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_STATEID = TSL_STATEID_TOUCH; // Go back to the previous state
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_DETECTOUT_TH, 1) == TSL_STATUS_OK)
{
THIS_STATEID = TSL_STATEID_TOUCH;
}
else
{
#if TSLPRM_USE_PROX > 0
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_PROXOUT_TH, 0) == TSL_STATUS_OK)
{
THIS_STATEID = TSL_STATEID_PROX;
return;
}
#endif
if (THIS_COUNTER_DEB > 0) {THIS_COUNTER_DEB--;}
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
// else stay in Debounce Release
}
}
}
/**
* @brief Release state processing
* @param None
* @retval None
*/
void TSL_linrot_ReleaseStateProcess(void)
{
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_ERROR;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_ERROR;
}
else
{
THIS_STATEID = TSL_STATEID_DEB_ERROR_RELEASE;
}
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAboveEqu(THIS_DETECTIN_TH, 1) == TSL_STATUS_OK)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_DETECT;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_DETECT;
DTO_GET_TIME; // Take current time for DTO processing
}
else
{
THIS_STATEID = TSL_STATEID_DEB_DETECT;
}
return;
}
#if TSLPRM_USE_PROX > 0
if (TSL_linrot_ProcessCh_One_DeltaAboveEqu(THIS_PROXIN_TH, 0) == TSL_STATUS_OK)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_PROX;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_PROX;
DTO_GET_TIME; // Take current time for DTO processing
}
else
{
THIS_STATEID = TSL_STATEID_DEB_PROX;
}
return;
}
#endif
// Check delta for re-calibration
if (TSL_linrot_ProcessCh_One_DeltaBelowEquMinus(THIS_CALIB_TH, 1) == TSL_STATUS_OK)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_CALIB;
if (THIS_COUNTER_DEB == 0)
{
TSL_linrot_SetStateCalibration(0);
}
else
{
THIS_STATEID = TSL_STATEID_DEB_CALIB;
}
}
}
}
/**
* @brief Debounce Calibration processing (previous state = Release)
* @param None
* @retval None
*/
void TSL_linrot_DebCalibrationStateProcess(void)
{
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_STATEID = TSL_STATEID_RELEASE; // Go back to the previous state
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaBelowEquMinus(THIS_CALIB_TH, 1) == TSL_STATUS_OK) // Still below recalibration threshold
{
if (THIS_COUNTER_DEB > 0) {THIS_COUNTER_DEB--;}
if (THIS_COUNTER_DEB == 0)
{
TSL_linrot_SetStateCalibration(0);
}
// else stay in Debounce Calibration
}
else // Go back to previous state
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
}
}
/**
* @brief Calibration state processing
* @param None
* @retval None
*/
void TSL_linrot_CalibrationStateProcess(void)
{
TSL_tMeas_T new_meas;
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch;
#if TSLPRM_CALIB_DELAY > 0
// Noise filter stabilization time
if (THIS_COUNTER_DEB > (TSL_tCounter_T)TSL_Params.NbCalibSamples)
{
THIS_COUNTER_DEB--;
return; // Skip the sample
}
#endif
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_ERROR;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_ERROR;
}
else
{
THIS_STATEID = TSL_STATEID_DEB_ERROR_CALIB;
}
}
else // Acquisition is OK or has NOISE
{
// Process all channels
p_Ch = TSL_Globals.This_LinRot->p_ChD;
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
// Get the new measure or Calculate it
#if TSLPRM_USE_MEAS > 0
new_meas = p_Ch->Meas;
#else // Calculate it
new_meas = TSL_acq_ComputeMeas(p_Ch->Ref, p_Ch->Delta);
#endif
// Verify the first Reference value
if (THIS_COUNTER_DEB == (TSL_tCounter_T)TSL_Params.NbCalibSamples)
{
if (TSL_acq_TestFirstReferenceIsValid(p_Ch, new_meas))
{
p_Ch->Ref = new_meas;
}
else
{
p_Ch->Ref = 0;
return;
}
}
else
{
// Add the measure in temporary Reference
p_Ch->Ref += new_meas;
// Check reference overflow
if (p_Ch->Ref < new_meas)
{
p_Ch->Ref = 0; // Suppress the bad reference
THIS_STATEID = TSL_STATEID_ERROR;
return;
}
}
p_Ch++; // Next channel
}
// Check that we have all the needed measurements
if (THIS_COUNTER_DEB > 0) {THIS_COUNTER_DEB--;}
if (THIS_COUNTER_DEB == 0)
{
// Process all channels
p_Ch = TSL_Globals.This_LinRot->p_ChD;
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
// Divide temporary Reference by the number of samples
p_Ch->Ref >>= CalibDiv;
p_Ch->RefRest = 0;
p_Ch->Delta = 0;
p_Ch++; // Next channel
}
THIS_STATEID = TSL_STATEID_RELEASE;
}
}
}
#if TSLPRM_USE_PROX > 0
/**
* @brief Debounce Proximity processing (previous state = Release)
* @param None
* @retval None
*/
void TSL_linrot_DebProxStateProcess(void)
{
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAboveEqu(THIS_DETECTIN_TH, 1) == TSL_STATUS_OK)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_DETECT;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_DETECT;
DTO_GET_TIME; // Take current time for DTO processing
}
else
{
THIS_STATEID = TSL_STATEID_DEB_DETECT;
}
return;
}
if (TSL_linrot_ProcessCh_One_DeltaAboveEqu(THIS_PROXIN_TH, 0) == TSL_STATUS_OK)
{
if (THIS_COUNTER_DEB > 0) {THIS_COUNTER_DEB--;}
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_PROX;
DTO_GET_TIME; // Take current time for DTO processing
}
// else stay in Debounce Proximity
}
else
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
}
}
#endif
#if TSLPRM_USE_PROX > 0
/**
* @brief Debounce Proximity processing (previous state = Detect)
* @param None
* @retval None
*/
void TSL_linrot_DebProxDetectStateProcess(void)
{
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_STATEID = TSL_STATEID_DETECT;
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_DETECTOUT_TH, 1) == TSL_STATUS_OK)
{
THIS_STATEID = TSL_STATEID_DETECT;
return;
}
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_PROXOUT_TH, 0) == TSL_STATUS_OK)
{
if (THIS_COUNTER_DEB > 0) {THIS_COUNTER_DEB--;}
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_PROX;
DTO_GET_TIME; // Take current time for DTO processing
}
// else stay in Debounce Proximity
}
else
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_RELEASE;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
else
{
THIS_STATEID = TSL_STATEID_DEB_RELEASE_DETECT;
}
}
}
}
#endif
#if TSLPRM_USE_PROX > 0
/**
* @brief Debounce Proximity processing (previous state = Touch)
* @param None
* @retval None
*/
void TSL_linrot_DebProxTouchStateProcess(void)
{
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_STATEID = TSL_STATEID_TOUCH;
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_DETECTOUT_TH, 1) == TSL_STATUS_OK)
{
THIS_STATEID = TSL_STATEID_TOUCH;
return;
}
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_PROXOUT_TH, 0) == TSL_STATUS_OK)
{
if (THIS_COUNTER_DEB > 0) {THIS_COUNTER_DEB--;}
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_PROX;
DTO_GET_TIME; // Take current time for DTO processing
}
// else stay in Debounce Proximity
}
else
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_RELEASE;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
else
{
THIS_STATEID = TSL_STATEID_DEB_RELEASE_TOUCH;
}
}
}
}
#endif
#if TSLPRM_USE_PROX > 0
/**
* @brief Proximity state processing
* @param None
* @retval None
*/
void TSL_linrot_ProxStateProcess(void)
{
#if TSLPRM_DTO > 0
TSL_tTick_sec_T tick_detected;
#endif
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_ERROR;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_ERROR;
}
else
{
THIS_STATEID = TSL_STATEID_DEB_ERROR_PROX;
}
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAboveEqu(THIS_DETECTIN_TH, 1) == TSL_STATUS_OK)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_DETECT;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_DETECT;
DTO_GET_TIME; // Take current time for DTO processing
}
else
{
THIS_STATEID = TSL_STATEID_DEB_DETECT;
}
return;
}
if (TSL_linrot_ProcessCh_All_DeltaBelowEqu(THIS_PROXOUT_TH, 0) == TSL_STATUS_OK)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_RELEASE;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
else
{
THIS_STATEID = TSL_STATEID_DEB_RELEASE_PROX;
}
return;
}
// Stay in Proximity state
#if TSLPRM_DTO > 0
//------------------------------------
// Detection Time Out (DTO) processing
//------------------------------------
if ((TSL_Params.DTO > 1) && (TSL_Params.DTO < 64))
{
tick_detected = THIS_COUNTER_DTO; // Get the detected time previously saved
// Enter in calibration state if the DTO duration has elapsed
if (TSL_tim_CheckDelay_sec(TSL_Params.DTO, &tick_detected) == TSL_STATUS_OK)
{
TSL_linrot_SetStateCalibration(0);
}
}
#endif
}
}
#endif
/**
* @brief Debounce Detect processing (previous state = Release or Proximity)
* @param None
* @retval None
*/
void TSL_linrot_DebDetectStateProcess(void)
{
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAboveEqu(THIS_DETECTIN_TH, 1) == TSL_STATUS_OK)
{
if (THIS_COUNTER_DEB > 0) {THIS_COUNTER_DEB--;}
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_DETECT;
DTO_GET_TIME; // Take current time for DTO processing
}
// else stay in Debounce Detect
}
else
{
#if TSLPRM_USE_PROX > 0
if (TSL_linrot_ProcessCh_One_DeltaAboveEqu(THIS_PROXIN_TH, 0) == TSL_STATUS_OK)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_PROX;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_PROX;
DTO_GET_TIME; // Take current time for DTO processing
}
else
{
THIS_STATEID = TSL_STATEID_DEB_PROX;
}
}
else
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
#else
THIS_STATEID = TSL_STATEID_RELEASE;
#endif
}
}
}
/**
* @brief Detect state processing
* @param None
* @retval None
*/
void TSL_linrot_DetectStateProcess(void)
{
#if TSLPRM_DTO > 0
TSL_Status_enum_T pos_sts;
TSL_tTick_sec_T tick_detected;
#endif
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_ERROR;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_ERROR;
}
else
{
THIS_STATEID = TSL_STATEID_DEB_ERROR_DETECT;
}
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_DETECTOUT_TH, 1) == TSL_STATUS_OK)
{
//-------------------
// Calculate position
//-------------------
if ((THIS_OBJ_TYPE == TSL_OBJ_LINEAR) || (THIS_OBJ_TYPE == TSL_OBJ_ROTARY))
{
// Call the specific method
#if TSLPRM_DTO > 0
pos_sts = TSL_Globals.This_LinRot->p_Methods->CalcPosition();
#else
TSL_Globals.This_LinRot->p_Methods->CalcPosition();
#endif
}
else // TSL_OBJ_LINEARB or TSL_OBJ_ROTARYB
{
// Call the default method
#if TSLPRM_DTO > 0
pos_sts = TSL_Params.p_LinRotMT->CalcPosition();
#else
TSL_Params.p_LinRotMT->CalcPosition();
#endif
}
#if TSLPRM_DTO > 0
//------------------------------------
// Detection Time Out (DTO) processing
// Only if the Position has NOT changed
//-------------------------------------
if (pos_sts == TSL_STATUS_OK)
{
DTO_GET_TIME; // Take current time
}
else
{
if ((TSL_Params.DTO > 1) && (TSL_Params.DTO < 64))
{
tick_detected = THIS_COUNTER_DTO; // Get the detected time previously saved
// Enter in calibration state if the DTO duration has elapsed
if (TSL_tim_CheckDelay_sec(TSL_Params.DTO, &tick_detected) == TSL_STATUS_OK)
{
TSL_linrot_SetStateCalibration(0);
}
}
}
#endif
return; // Normal operation, stay in Detect state
}
#if TSLPRM_USE_PROX > 0
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_PROXOUT_TH, 0) == TSL_STATUS_OK)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_PROX;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_PROX;
DTO_GET_TIME; // Take current time for DTO processing
}
else
{
THIS_STATEID = TSL_STATEID_DEB_PROX_DETECT;
}
return;
}
#endif
THIS_COUNTER_DEB = THIS_COUNTER_DEB_RELEASE;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
else
{
THIS_STATEID = TSL_STATEID_DEB_RELEASE_DETECT;
}
}
}
/**
* @brief Touch state processing
* Same as Detect state
* @param None
* @retval None
*/
void TSL_linrot_TouchStateProcess(void)
{
#if TSLPRM_DTO > 0
TSL_Status_enum_T pos_sts;
TSL_tTick_sec_T tick_detected;
#endif
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_ERROR;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_ERROR;
}
else
{
THIS_STATEID = TSL_STATEID_DEB_ERROR_TOUCH;
}
}
else // Acquisition is OK or has NOISE
{
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_DETECTOUT_TH, 1) == TSL_STATUS_OK)
{
//-------------------
// Calculate position
//-------------------
if ((THIS_OBJ_TYPE == TSL_OBJ_LINEAR) || (THIS_OBJ_TYPE == TSL_OBJ_ROTARY))
{
// Call the specific method
#if TSLPRM_DTO > 0
pos_sts = TSL_Globals.This_LinRot->p_Methods->CalcPosition();
#else
TSL_Globals.This_LinRot->p_Methods->CalcPosition();
#endif
}
else // TSL_OBJ_LINEARB or TSL_OBJ_ROTARYB
{
// Call the default method
#if TSLPRM_DTO > 0
pos_sts = TSL_Params.p_LinRotMT->CalcPosition();
#else
TSL_Params.p_LinRotMT->CalcPosition();
#endif
}
#if TSLPRM_DTO > 0
//------------------------------------
// Detection Time Out (DTO) processing
// Only if the Position has NOT changed
//-------------------------------------
if (pos_sts == TSL_STATUS_OK)
{
DTO_GET_TIME; // Take current time
}
else
{
if ((TSL_Params.DTO > 1) && (TSL_Params.DTO < 64))
{
tick_detected = THIS_COUNTER_DTO; // Get the detected time previously saved
// Enter in calibration state if the DTO duration has elapsed
if (TSL_tim_CheckDelay_sec(TSL_Params.DTO, &tick_detected) == TSL_STATUS_OK)
{
TSL_linrot_SetStateCalibration(0);
}
}
}
#endif
return; // Normal operation, stay in Touch state
}
#if TSLPRM_USE_PROX > 0
if (TSL_linrot_ProcessCh_One_DeltaAbove(THIS_PROXOUT_TH, 0) == TSL_STATUS_OK)
{
THIS_COUNTER_DEB = THIS_COUNTER_DEB_PROX;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_PROX;
DTO_GET_TIME; // Take current time for DTO processing
}
else
{
THIS_STATEID = TSL_STATEID_DEB_PROX_TOUCH;
}
return;
}
#endif
THIS_COUNTER_DEB = THIS_COUNTER_DEB_RELEASE;
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_RELEASE;
}
else
{
THIS_STATEID = TSL_STATEID_DEB_RELEASE_TOUCH;
}
}
}
/**
* @brief Debounce error state processing
* @param None
* @retval None
*/
void TSL_linrot_DebErrorStateProcess(void)
{
volatile TSL_StateMask_enum_T mask;
if (TSL_linrot_ProcessCh_One_AcqStatusError() == TSL_STATUS_OK) // Acquisition error (min or max)
{
if (THIS_COUNTER_DEB > 0) {THIS_COUNTER_DEB--;}
if (THIS_COUNTER_DEB == 0)
{
THIS_STATEID = TSL_STATEID_ERROR;
}
}
else // Acquisition is OK or has NOISE
{
// Get state mask
mask = TSL_linrot_GetStateMask();
// Mask Error and Debounce bits
#ifdef _RAISONANCE_
mask &= ~(TSL_STATE_DEBOUNCE_BIT_MASK | TSL_STATE_ERROR_BIT_MASK);
#else
mask &= (TSL_StateMask_enum_T)(~(TSL_STATE_DEBOUNCE_BIT_MASK | TSL_STATE_ERROR_BIT_MASK));
#endif
// Go back to the previous state
switch (mask)
{
case TSL_STATEMASK_RELEASE :
THIS_STATEID = TSL_STATEID_RELEASE;
break;
case TSL_STATEMASK_PROX :
THIS_STATEID = TSL_STATEID_PROX;
break;
case TSL_STATEMASK_DETECT :
THIS_STATEID = TSL_STATEID_DETECT;
break;
case TSL_STATEMASK_TOUCH :
THIS_STATEID = TSL_STATEID_TOUCH;
break;
default:
TSL_linrot_SetStateCalibration(0);
break;
}
}
}
//==============================================================================
// Private functions
//==============================================================================
/**
* @brief Get the current time in second and affect it to the DTO counter (Private)
* @param None
* @retval None
*/
void TSL_linrot_DTOGetTime(void)
{
disableInterrupts();
THIS_COUNTER_DTO = (TSL_tCounter_T)TSL_Globals.Tick_sec;
enableInterrupts();
}
/**
* @brief Set all channels status to ON, OFF or BURST ONLY
* @param sts Channel status
* @retval None
*/
void TSL_linrot_ProcessCh_All_SetStatus(TSL_ObjStatus_enum_T sts)
{
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch = TSL_Globals.This_LinRot->p_ChD;
// Init channels status
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
p_Ch->Flags.ObjStatus = sts;
p_Ch++;
}
}
/**
* @brief Check if at least one channel has a data ready
* @param None
* @retval Status
*/
TSL_Status_enum_T TSL_linrot_ProcessCh_One_DataReady(void)
{
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch = TSL_Globals.This_LinRot->p_ChD;
TSL_Status_enum_T retval = TSL_STATUS_ERROR;
// Return OK if at least one channel has a data ready
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
if (p_Ch->Flags.DataReady == TSL_DATA_READY)
{
p_Ch->Flags.DataReady = TSL_DATA_NOT_READY; // The new data is processed
retval = TSL_STATUS_OK;
}
p_Ch++;
}
return retval;
}
/**
* @brief Check if all channels are equal to the status passed
* @param sts Status to be checked
* @retval Status
*/
TSL_Status_enum_T TSL_linrot_ProcessCh_All_AcqStatus(TSL_AcqStatus_enum_T sts)
{
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch = TSL_Globals.This_LinRot->p_ChD;
// Return OK if ALL channels have the correct acq status
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
if (p_Ch->Flags.AcqStatus != sts)
{
return TSL_STATUS_ERROR;
}
p_Ch++;
}
return TSL_STATUS_OK;
}
/**
* @brief Check if at least one channel is in error
* @param None
* @retval Status
*/
TSL_Status_enum_T TSL_linrot_ProcessCh_One_AcqStatusError(void)
{
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch = TSL_Globals.This_LinRot->p_ChD;
// Return OK if at least one channel is in acquisition error min or max
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
if (p_Ch->Flags.AcqStatus & TSL_ACQ_STATUS_ERROR_MASK)
{
return TSL_STATUS_OK;
}
p_Ch++;
}
return TSL_STATUS_ERROR;
}
/**
* @brief Check if at least one channel is below or equal a threshold (inverted)
* @param th Threshold
* @param coeff Enable or Disable the multiplier coefficient on threshold
* @retval Status
*/
TSL_Status_enum_T TSL_linrot_ProcessCh_One_DeltaBelowEquMinus(TSL_tThreshold_T th, TSL_tIndex_T coeff)
{
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch = TSL_Globals.This_LinRot->p_ChD;
TSL_tDelta_T norm_delta;
#if TSLPRM_COEFF_TH > 0
uint16_t lth;
if (coeff)
{
lth = (uint16_t)((uint16_t)th << TSLPRM_COEFF_TH);
}
else
{
lth = th;
}
#endif
// Return OK if at least one channel is below or equal the threshold
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
#if TSLPRM_LINROT_USE_NORMDELTA > 0
norm_delta = TSL_linrot_NormDelta(p_Ch, idx); // Normalize the Delta
#else
norm_delta = p_Ch->Delta; // Take only the Delta
#endif
#if TSLPRM_COEFF_TH > 0
if (norm_delta <= -lth) // Warning!!! The threshold is inverted
#else
if (norm_delta <= -th) // Warning!!! The threshold is inverted
#endif
{
return TSL_STATUS_OK;
}
p_Ch++;
}
return TSL_STATUS_ERROR;
}
/**
* @brief Check if at least one channel is above or equal a threshold
* @param th Threshold
* @param coeff Enable or Disable the multiplier coefficient on threshold
* @retval Status
*/
TSL_Status_enum_T TSL_linrot_ProcessCh_One_DeltaAboveEqu(TSL_tThreshold_T th, TSL_tIndex_T coeff)
{
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch = TSL_Globals.This_LinRot->p_ChD;
TSL_tDelta_T norm_delta;
#if TSLPRM_COEFF_TH > 0
uint16_t lth;
if (coeff)
{
lth = (uint16_t)((uint16_t)th << TSLPRM_COEFF_TH);
}
else
{
lth = th;
}
#endif
// Return OK if at least one channel is above or equal the threshold
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
#if TSLPRM_LINROT_USE_NORMDELTA > 0
norm_delta = TSL_linrot_NormDelta(p_Ch, idx); // Normalize the Delta
#else
norm_delta = p_Ch->Delta; // Take only the Delta
#endif
#if TSLPRM_COEFF_TH > 0
if (norm_delta >= lth)
#else
if (norm_delta >= th)
#endif
{
#if TSLPRM_COEFF_TH > 0
if (norm_delta < 0)
{
p_Ch++;
continue;
}
#endif
return TSL_STATUS_OK;
}
p_Ch++;
}
return TSL_STATUS_ERROR;
}
/**
* @brief Check if at least one channel is stricly above a threshold
* @param th Threshold
* @param coeff Enable or Disable the multiplier coefficient on threshold
* @retval Status
*/
TSL_Status_enum_T TSL_linrot_ProcessCh_One_DeltaAbove(TSL_tThreshold_T th, TSL_tIndex_T coeff)
{
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch = TSL_Globals.This_LinRot->p_ChD;
TSL_tDelta_T norm_delta;
#if TSLPRM_COEFF_TH > 0
uint16_t lth;
if (coeff)
{
lth = (uint16_t)((uint16_t)th << TSLPRM_COEFF_TH);
}
else
{
lth = th;
}
#endif
// Return OK if at least one channel is above the threshold
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
#if TSLPRM_LINROT_USE_NORMDELTA > 0
norm_delta = TSL_linrot_NormDelta(p_Ch, idx); // Normalize the Delta
#else
norm_delta = p_Ch->Delta; // Take only the Delta
#endif
#if TSLPRM_COEFF_TH > 0
if (norm_delta > lth)
#else
if (norm_delta > th)
#endif
{
#if TSLPRM_COEFF_TH > 0
if (norm_delta < 0)
{
p_Ch++;
continue;
}
#endif
return TSL_STATUS_OK;
}
p_Ch++;
}
return TSL_STATUS_ERROR;
}
/**
* @brief Check if all channels are below or equal a threshold
* @param th Threshold
* @param coeff Enable or Disable the multiplier coefficient on threshold
* @retval Status
*/
TSL_Status_enum_T TSL_linrot_ProcessCh_All_DeltaBelowEqu(TSL_tThreshold_T th, TSL_tIndex_T coeff)
{
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch = TSL_Globals.This_LinRot->p_ChD;
TSL_tDelta_T norm_delta;
#if TSLPRM_COEFF_TH > 0
uint16_t lth;
if (coeff)
{
lth = (uint16_t)((uint16_t)th << TSLPRM_COEFF_TH);
}
else
{
lth = th;
}
#endif
// Return OK if ALL channels are below or equal the threshold
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
#if TSLPRM_LINROT_USE_NORMDELTA > 0
norm_delta = TSL_linrot_NormDelta(p_Ch, idx); // Normalize the Delta
#else
norm_delta = p_Ch->Delta; // Take only the Delta
#endif
#if TSLPRM_COEFF_TH > 0
if (norm_delta > lth)
#else
if (norm_delta > th)
#endif
{
#if TSLPRM_COEFF_TH > 0
if (norm_delta < 0)
{
p_Ch++;
continue;
}
#endif
return TSL_STATUS_ERROR;
}
p_Ch++;
}
return TSL_STATUS_OK;
}
/**
* @brief Clear the Reference and ReferenceRest for all channels
* @param None
* @retval None
*/
void TSL_linrot_ProcessCh_All_ClearRef(void)
{
TSL_tIndex_T idx;
TSL_ChannelData_T *p_Ch = TSL_Globals.This_LinRot->p_ChD;
for (idx = 0; idx < THIS_NB_CHANNELS; idx++)
{
p_Ch->Ref = 0;
p_Ch->RefRest = 0;
p_Ch++;
}
}
/**
* @brief Normalize a Delta value
* @param ch Pointer to the current channel
* @param idx Index of the channel
* @retval Normalized Delta value
*/
TSL_tDelta_T TSL_linrot_NormDelta(TSL_ChannelData_T *ch, TSL_tIndex_T idx)
{
uint32_t tmpdelta = ch->Delta;
// Apply coefficient
if (TSL_Globals.This_LinRot->p_DeltaCoeff[idx] != 0x0100)
{
tmpdelta = (uint32_t)(tmpdelta * TSL_Globals.This_LinRot->p_DeltaCoeff[idx]);
tmpdelta = tmpdelta >> (uint8_t)8;
}
return (TSL_tDelta_T)tmpdelta;
}
#endif
// #if TSLPRM_TOTAL_LNRTS > 0
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/