/**
******************************************************************************
* @file tsl_acq_stm32l1xx_hw.c
* @author MCD Application Team
* @version V1.4.4
* @date 31-March-2014
* @brief This file contains all functions to manage the acquisition
* on STM32l1xx products using the Hardware mode (with Timers).
******************************************************************************
* @attention
*
*
© COPYRIGHT 2014 STMicroelectronics
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "tsl_acq_stm32l1xx_hw.h"
#include "tsl_globals.h"
/* Private typedefs ----------------------------------------------------------*/
// Register configuration
typedef struct
{
unsigned int RI_ASCR : 3;
unsigned int RI_ASCR_bit : 5;
} TSL_RIConf_t;
/* Private defines -----------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
#define IS_BANK_INDEX_OK(INDEX) (((INDEX) == 0) || (((INDEX) > 0) && ((INDEX) < TSLPRM_TOTAL_BANKS)))
// Acquisition pulses period
/** Master timer reload value for HW acquisition only (range=4..65534, even number)
--> Period for Charge/Transfer cycle = ((TSLPRM_TIM_RELOAD*2)/FTimer)
*/
#define TIM_RELOAD ((TSLPRM_CT_PERIOD * TSLPRM_TIMER_FREQ) / 2)
#define TIM9_PWM_CH1_WIDTH ((TIM_RELOAD >> 1) + 1) // Configure channel 1 Pulse Width
#define TIM9_PWM_CH2_WIDTH ((TIM_RELOAD >> 1) - 1) // Configure channel 2 Pulse Width
#define TSL_CHANNEL_PORT(channel) (channel >> 4)
#define TSL_CHANNEL_IO(channel) (channel & 0x0F)
#define TSL_GPIO_AFR(channel) ((TSL_CHANNEL_IO(channel) < 8) ? 0 : 1)
#define TSL_GPIO_AFR_Shift(channel) ((TSL_CHANNEL_IO(channel) < 8) ? (4 * TSL_CHANNEL_IO(channel)) : (4 * (TSL_CHANNEL_IO(channel) - 8)))
#define TSL_RI_HYSCR_MASK(channel) (1 << TSL_CHANNEL_IO(channel))
#define TSL_RI_ASMR_MASK(channel) (1 << TSL_CHANNEL_IO(channel))
#define TSL_RI_CMR_MASK(channel) (1 << TSL_CHANNEL_IO(channel))
#define TSL_RI_CICR_MASK(channel) (1 << TSL_CHANNEL_IO(channel))
#define TSL_RCC_AHBENR_Config(channel) (RCC->AHBENR |= TSL_GPIO_Clock_LookUpTable[TSL_CHANNEL_PORT(channel)])
#define TSL_RI_ASCR_Config(channel) (*TSL_RI_ASCR_LookUpTable[TSL_RI_Conf_LookUpTable[channel].RI_ASCR] |= (1 << (TSL_RI_Conf_LookUpTable[channel].RI_ASCR_bit)))
#define TSL_RI_HYSCR_Config(channel) (*TSL_RI_HYSCR_LookUpTable[TSL_CHANNEL_PORT(channel)] |= TSL_RI_HYSCR_MASK(channel))
#define TSL_RI_ASMR_Config(channel) (*TSL_RI_ASMR_LookUpTable[TSL_CHANNEL_PORT(channel)] |= TSL_RI_ASMR_MASK(channel))
#define TSL_RI_ASMR_Config_Clear(channel) (*TSL_RI_ASMR_LookUpTable[TSL_CHANNEL_PORT(channel)] &= (uint32_t)(~TSL_RI_ASMR_MASK(channel)))
#define TSL_RI_CMR_Config(channel) (*TSL_RI_CMR_LookUpTable[TSL_CHANNEL_PORT(channel)] |= TSL_RI_CMR_MASK(channel))
#define TSL_RI_CMR_Config_Clear(channel) (*TSL_RI_CMR_LookUpTable[TSL_CHANNEL_PORT(channel)] &= (uint32_t)(~TSL_RI_CMR_MASK(channel)))
#define TSL_RI_CICR_Config(channel) (*TSL_RI_CICR_LookUpTable[TSL_CHANNEL_PORT(channel)] |= TSL_RI_CICR_MASK(channel))
#define TSL_RI_CICR_Config_Clear(channel) (*TSL_RI_CICR_LookUpTable[TSL_CHANNEL_PORT(channel)] &= (uint32_t)(~TSL_RI_CICR_MASK(channel)))
#define TSL_GPIO_MODER_IN_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->MODER &= (uint32_t)(~(3 << (2 * TSL_CHANNEL_IO(channel)))))
#define TSL_GPIO_MODER_AF_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->MODER = (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->MODER & (uint32_t)(~(3 << (2 * TSL_CHANNEL_IO(channel))))) | (2 << (2 * TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_MODER_OUT_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->MODER = (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->MODER & (uint32_t)(~(3 << (2 * TSL_CHANNEL_IO(channel))))) | (1 << (2 * TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_PUPDR_NO_PUPD_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->PUPDR &= (uint32_t)(~(3 << (2 * TSL_CHANNEL_IO(channel)))))
#define TSL_GPIO_OTYPER_PP_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->OTYPER &= (uint32_t)(~(1 << TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_OSPEEDR_VL_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->OSPEEDR &= (uint32_t)~(3 << (2 * TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_AFR_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->AFR[TSL_GPIO_AFR(channel)] |= (0x0E << (TSL_GPIO_AFR_Shift(channel))))
#define TSL_GPIO_BS_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->BSRRL = (uint16_t)(1 << (TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_BR_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->BSRRH = (uint16_t)(1 << (TSL_CHANNEL_IO(channel))))
#define TSL_GPIO_AFR_NOAF_Config(channel) (TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->AFR[TSL_GPIO_AFR(channel)] &= (uint32_t)(~(0x0F << (TSL_GPIO_AFR_Shift(channel)))))
#define TSL_GPIO_IDR_XOR_RI_CMR(channel) ((TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->IDR)^(*TSL_RI_CMR_LookUpTable[TSL_CHANNEL_PORT(channel)]))
#define TSL_GPIO_IDR_AND_RI_CMR(channel) ((TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(channel)]->IDR)&(*TSL_RI_CMR_LookUpTable[TSL_CHANNEL_PORT(channel)]))
/* Private variables ---------------------------------------------------------*/
CONST TSL_Bank_T *bank;
TSL_tIndex_T NumberOfChannelOn = 0;
TSL_tNb_T NumberOfChannels = 0;
uint32_t tab_MeasurementCounter[11];
TSL_Status_enum_T TSL_Acq_Status = TSL_STATUS_BUSY;
static uint16_t GroupToCheck = 0;
static TSL_tIndex_T NumberOfChannelChecked = 0;
uint32_t TSL_GPIO_Clock_LookUpTable[] = {RCC_AHBPeriph_GPIOA, RCC_AHBPeriph_GPIOB, RCC_AHBPeriph_GPIOC, RCC_AHBPeriph_GPIOD, RCC_AHBPeriph_GPIOE, RCC_AHBPeriph_GPIOF, RCC_AHBPeriph_GPIOG, RCC_AHBPeriph_GPIOH};
GPIO_TypeDef *TSL_GPIO_LookUpTable[] = {GPIOA, GPIOB, GPIOC, GPIOD, GPIOE, GPIOF, GPIOG, GPIOH};
uint32_t *TSL_RI_ASCR_LookUpTable[] = {(uint32_t *)&RI->ASCR1, (uint32_t *)&RI->ASCR2};
uint16_t *TSL_RI_HYSCR_LookUpTable[] =
{
(uint16_t *)&RI->HYSCR1, (uint16_t *)&RI->HYSCR1 + 1,
(uint16_t *)&RI->HYSCR2, (uint16_t *)&RI->HYSCR2 + 1,
(uint16_t *)&RI->HYSCR3, (uint16_t *)&RI->HYSCR3 + 1,
(uint16_t *)&RI->HYSCR4, (uint16_t *)&RI->HYSCR4 + 1
};
uint32_t *TSL_RI_ASMR_LookUpTable[] = {(uint32_t *)&RI->ASMR1, (uint32_t *)&RI->ASMR2, (uint32_t *)&RI->ASMR3, 0, 0, (uint32_t *)&RI->ASMR4, (uint32_t *)&RI->ASMR5};
uint32_t *TSL_RI_CMR_LookUpTable[] = {(uint32_t *)&RI->CMR1, (uint32_t *)&RI->CMR2, (uint32_t *)&RI->CMR3, 0, 0, (uint32_t *)&RI->CMR4, (uint32_t *)&RI->CMR5};
uint32_t *TSL_RI_CICR_LookUpTable[] = {(uint32_t *)&RI->CICR1, (uint32_t *)&RI->CICR2, (uint32_t *)&RI->CICR3, 0, 0, (uint32_t *)&RI->CICR4, (uint32_t *)&RI->CICR5};
CONST TSL_RIConf_t TSL_RI_Conf_LookUpTable[101] =
{
{0, 0},
{0, 1},
{0, 2},
{0, 3},
{0, 0},//padding
{0, 0},//padding
{0, 6},
{0, 7},
{1, 9},
{1, 10},
{1, 11},
{1, 15},
{0, 0},//padding
{1, 6},
{1, 7},
{1, 8},
{0, 8},
{0, 9},
{1, 16},
{0, 0},//padding
{1, 4},
{1, 5},
{1, 27},
{1, 28},
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 18},
{0, 19},
{0, 20},
{0, 21},
{0, 10},
{0, 11},
{0, 12},
{0, 13},
{0, 14},
{0, 15},
{1, 0},
{1, 1},
{1, 2},
{1, 3},
{1, 29},
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 0},//padding
{0, 27},
{0, 28},
{0, 29},
{0, 30},
{0, 16},
{1, 17},
{1, 18},
{1, 19},
{1, 20},
{1, 21},
{1, 22},
{1, 23},
{1, 24},
{1, 25},
{1, 26}
};
/* Private functions prototype -----------------------------------------------*/
void TSL_Init_GPIOs(void);
void TSL_Init_TIMs(void);
void TSL_Init_RI(void);
uint8_t TSL_Check_GPIO_IDR(uint8_t sample);
void SoftDelay(uint16_t val);
/**
* @brief Initializes the TouchSensing GPIOs.
* @param None
* @retval None
*/
void TSL_Init_GPIOs(void)
{
CONST TSL_Bank_T *LocalBank = &(TSL_Globals.Bank_Array[0]);
TSL_tNb_T NumberOfBanks = TSLPRM_TOTAL_BANKS;
TSL_tNb_T LocalNumberOfChannels = 0;
TSL_tIndex_T idx_bk;
TSL_tIndex_T idx_ch;
CONST TSL_ChannelSrc_T *p_chSrc = LocalBank->p_chSrc; // Pointer to the current channel
for (idx_bk = 0; idx_bk < NumberOfBanks; idx_bk++)
{
LocalBank = &(TSL_Globals.Bank_Array[idx_bk]);
p_chSrc = LocalBank->p_chSrc;
#if (TSLPRM_USE_SHIELD > 0)
// Enables GPIOs clock
TSL_RCC_AHBENR_Config(LocalBank->shield_sample);
// Bank shield configuration
TSL_GPIO_OTYPER_PP_Config(LocalBank->shield_channel);
TSL_GPIO_OSPEEDR_VL_Config(LocalBank->shield_channel);
TSL_GPIO_PUPDR_NO_PUPD_Config(LocalBank->shield_channel);
TSL_GPIO_AFR_Config(LocalBank->shield_channel);
TSL_GPIO_OSPEEDR_VL_Config(LocalBank->shield_sample);
TSL_GPIO_BR_Config(LocalBank->shield_sample);
TSL_GPIO_OTYPER_PP_Config(LocalBank->shield_sample);
TSL_GPIO_PUPDR_NO_PUPD_Config(LocalBank->shield_sample);
TSL_GPIO_MODER_OUT_Config(LocalBank->shield_sample);
TSL_GPIO_MODER_OUT_Config(LocalBank->shield_channel);
#endif
LocalNumberOfChannels = LocalBank->NbChannels;
for (idx_ch = 0;
idx_ch < LocalNumberOfChannels;
idx_ch++)
{
TSL_RCC_AHBENR_Config(p_chSrc->t_sample);
TSL_RCC_AHBENR_Config(p_chSrc->t_channel);
TSL_GPIO_OTYPER_PP_Config(p_chSrc->t_channel);
TSL_GPIO_OSPEEDR_VL_Config(p_chSrc->t_channel);
TSL_GPIO_PUPDR_NO_PUPD_Config(p_chSrc->t_channel);
TSL_GPIO_AFR_Config(p_chSrc->t_channel);
TSL_GPIO_OSPEEDR_VL_Config(p_chSrc->t_sample);
TSL_GPIO_BR_Config(p_chSrc->t_sample);
TSL_GPIO_OTYPER_PP_Config(p_chSrc->t_sample);
TSL_GPIO_PUPDR_NO_PUPD_Config(p_chSrc->t_sample);
TSL_GPIO_MODER_OUT_Config(p_chSrc->t_sample);
TSL_GPIO_MODER_OUT_Config(p_chSrc->t_channel);
p_chSrc++;
}
}
}
/**
* @brief Initializes the TouchSensing timers.
* @param None
* @retval None
*/
// Acquisition pulses period
/** Master timer reload value for HW acquisition only (range=4..65534, even number)
--> Period for Charge/Transfer cycle = ((TSLPRM_TIM_RELOAD*2)/FTimer)
*/
void TSL_Init_TIMs(void)
{
// Enable Timers clocks
RCC->APB2ENR |= ((1 << 4) | (1 << 2)); // TIM11, TIM9
//==============================
// TIMER 9 configuration: Master
//==============================
// Set the option register to redirect RI_tim9_itr_O to TIM9_itr
TIM9->OR |= 4;
// Set the Autoreload value (signal frequency)
//TIM9->ARR = 64; // freq = (64*2)*31.25ns = 1us
TIM9->ARR = TIM_RELOAD; // freq = (64*2)*31.25ns = 1us
// Set the Prescaler value
//TIM9->PSC = 0; // fCK_CNT = 32MHz/(0+1) = 32MHz --> T=31.25ns
//TIM9->PSC = TSLPRM_TIM_PRESCALER; // fCK_CNT = 32MHz/(1+1) = 32MHz --> T=31.25ns
TIM9->PSC = 0; // fCK_CNT = 32MHz/(1+1) = 32MHz --> T=31.25ns
// Set UP counter, Center-Aligned mode 1
TIM9->CR1 = 0x20;
// OC1REF used as TRGO
TIM9->CR2 |= 0x40; // MMS=100
// Select Master mode
TIM9->SMCR = 0x95;
// Set Update generation
TIM9->EGR |= 0x01;
// Channel 1 PWM configuration
// Set the Output Compare Mode, PWM2
TIM9->CCMR1 |= 0x0070;
// Set the Pulse value
//TIM9->CCR1 = 34; // duty cycle
TIM9->CCR1 = TIM9_PWM_CH1_WIDTH; // duty cycle
// Compare output enable, active high
TIM9->CCER |= 0x01;
// Channel 2 PWM configuration
// Set the Output Compare Mode, PWM2
TIM9->CCMR1 |= 0x6000;
// Set the Pulse value
//TIM9->CCR2 = 30;
TIM9->CCR2 = TIM9_PWM_CH2_WIDTH;
// Compare output enable, active high
TIM9->CCER |= 0x10;
//==============================
// TIMER 11 configuration: slave
//==============================
// Set the option register to redirect TIM11_ic_o to TIM11_ti
TIM11->OR |= 8;
// Set the option register to redirect TIM9_tgo_cktim to TIM11_etri
TIM11->OR |= 4;
// Set the Prescaler value
TIM11->PSC = 0;
// Set UP counter, edge-aligned mode
TIM11->CR1 = 0;
// Select Slave mode, Internal Trigger 2 (ITR2 = TIM9), External clock mode 1
TIM11->SMCR = 0x4000; // ECE bit
// Channel 1 configured in Input capture mode
TIM11->CCMR1 = 0x01; // No prescaler, no filter
// Channel 1 capture enable (CCE1 = 1)
TIM11->CCER = 0x01;
// Set auto reload regarding the max count
#if (TSLPRM_ACQ_MAX < 16534)
TIM11->ARR = TSLPRM_ACQ_MAX+1;
#endif
// Interrupt Enable, active high, Enable interrupt when counter reaches max count (ARR)
TIM11->DIER |= 0x03;
// Start slave timer
TIM11->CR1 |= 0x01;
}
/**
* @brief Init TS routing interface.
* @param None
* @retval None
*/
void TSL_Init_RI(void)
{
CONST TSL_Bank_T *LocalBank;
TSL_tNb_T NumberOfBanks = TSLPRM_TOTAL_BANKS;
TSL_tNb_T LocalNumberOfChannels = 0;
TSL_tIndex_T idx_bk;
TSL_tIndex_T idx_ch;
CONST TSL_ChannelSrc_T *p_chSrc; // Pointer to the current channel
RCC->APB1ENR |= (uint32_t)((uint32_t)1 << 31); // COMP enable
for (idx_bk = 0; idx_bk < NumberOfBanks; idx_bk++)
{
LocalBank = &(TSL_Globals.Bank_Array[idx_bk]);
#if (TSLPRM_USE_SHIELD > 0)
TSL_RI_HYSCR_Config(LocalBank->shield_sample);
TSL_RI_CICR_Config(LocalBank->shield_sample);
TSL_RI_CICR_Config_Clear(LocalBank->shield_channel);
TSL_RI_ASCR_Config(LocalBank->shield_sample);
#endif
LocalNumberOfChannels = LocalBank->NbChannels;
p_chSrc = LocalBank->p_chSrc;
for (idx_ch = 0; idx_ch < LocalNumberOfChannels; idx_ch++)
{
TSL_RI_HYSCR_Config(p_chSrc->t_sample);
TSL_RI_CICR_Config(p_chSrc->t_sample);
TSL_RI_CICR_Config_Clear(p_chSrc->t_channel);
TSL_RI_ASCR_Config(p_chSrc->t_sample);
p_chSrc++;
}
}
// Reset TSUSP bit, TIM9 ITR enabled to suspend OC TIM9 generation
COMP->CSR &= (uint32_t)(~0x80000000);
}
/**
* @brief Initializes the acquisition module.
* @param None
* @retval retval
*/
TSL_Status_enum_T TSL_acq_Init(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = TIM11_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TSL_Init_GPIOs();
TSL_Init_TIMs();
TSL_Init_RI();
return TSL_STATUS_OK;
}
/**
* @brief Configures a Bank.
* @param[in] idx_bk Index of the Bank to configure
* @retval Status
*/
TSL_Status_enum_T TSL_acq_BankConfig(TSL_tIndex_T idx_bk)
{
TSL_tIndex_T idx_dest;
TSL_tIndex_T idx_ch;
CONST TSL_ChannelDest_T *p_chDest; // Pointer to the current channel
CONST TSL_ChannelSrc_T *p_chSrc; // Pointer to the current channel
// Check parameters (if USE_FULL_ASSERT is defined)
assert_param(IS_BANK_INDEX_OK(idx_bk));
bank = &(TSL_Globals.Bank_Array[idx_bk]);
NumberOfChannels = bank->NbChannels;
GroupToCheck = 0;//init group to check
NumberOfChannelOn = 0;//init number of channel on
// init RI ASMR
RI->ASMR1 = 0;
RI->ASMR2 = 0;
RI->ASMR3 = 0;
RI->ASMR4 = 0;
RI->ASMR5 = 0;
p_chDest = bank->p_chDest;
p_chSrc = bank->p_chSrc;
for (idx_ch = 0; idx_ch < NumberOfChannels; idx_ch++)
{
// Get index in the result array associated to the current channel
idx_dest = p_chDest->IdxDest;
if (bank->p_chData[idx_dest].Flags.ObjStatus != TSL_OBJ_STATUS_OFF)
{
TSL_RI_CMR_Config(p_chSrc->t_sample);
TSL_RI_ASMR_Config(p_chSrc->t_channel);
GroupToCheck |= (1 << (p_chSrc->IdxSrc));
NumberOfChannelOn++;
}
p_chDest++;
p_chSrc++;
}
return TSL_STATUS_OK;
}
/**
* @brief Start acquisition on a previously configured bank
* @param None
* @retval None
*/
void TSL_acq_BankStartAcq(void)
{
#if (TSLPRM_IODEF > 0)
CONST TSL_Bank_T *LocalBank = &(TSL_Globals.Bank_Array[0]);
TSL_tNb_T NumberOfBanks = TSLPRM_TOTAL_BANKS;
TSL_tNb_T LocalNumberOfChannels = 0;
TSL_tIndex_T BankIndex;
#endif
CONST TSL_ChannelSrc_T *p_chSrc;
CONST TSL_ChannelDest_T *p_chDest;
TSL_tIndex_T idx_dest;
TSL_tIndex_T idx_ch;
if (NumberOfChannelOn)
{
#if (TSLPRM_IODEF > 0)
//============================
// All GPIOs in Input floating
//============================
for (BankIndex = 0; BankIndex < NumberOfBanks; BankIndex++)
{
LocalBank = &(TSL_Globals.Bank_Array[BankIndex]);
p_chSrc = LocalBank->p_chSrc;
#if (TSLPRM_USE_SHIELD > 0)
TSL_GPIO_MODER_IN_Config(LocalBank->shield_sample);
TSL_GPIO_MODER_IN_Config(LocalBank->shield_channel);
#endif
LocalNumberOfChannels = LocalBank->NbChannels;
for (idx_ch = 0;
idx_ch < LocalNumberOfChannels;
idx_ch++)
{
TSL_GPIO_MODER_IN_Config(p_chSrc->t_sample);
TSL_GPIO_MODER_IN_Config(p_chSrc->t_channel);
p_chSrc++;
}
}
#endif
// Reset count
TIM11->CNT = 0;
// Discharge sample capacitors
p_chDest = bank->p_chDest;
p_chSrc = bank->p_chSrc;
for (idx_ch = 0; idx_ch < NumberOfChannels; idx_ch++)
{
// Get index in the result array associated to the current channel
idx_dest = p_chDest->IdxDest;
if (bank->p_chData[idx_dest].Flags.ObjStatus != TSL_OBJ_STATUS_OFF)
{
TSL_GPIO_MODER_OUT_Config(p_chSrc->t_sample);
}
p_chDest++;
p_chSrc++;
}
#if (TSLPRM_USE_SHIELD > 0)
// Discharge shield sample capacitor
TSL_GPIO_MODER_OUT_Config(bank->shield_sample);
#endif
// Wait for capa discharge
SoftDelay(0x80);
#if (TSLPRM_USE_SHIELD > 0)
// Init sample shield in floating input
TSL_GPIO_MODER_IN_Config(bank->shield_sample);
TSL_GPIO_MODER_AF_Config(bank->shield_channel);
TSL_RI_ASMR_Config(bank->shield_channel);
#endif
// Init samples in floating input and channels in alternate
p_chDest = bank->p_chDest;
p_chSrc = bank->p_chSrc;
for (idx_ch = 0; idx_ch < NumberOfChannels; idx_ch++)
{
// Get index in the result array associated to the current channel
idx_dest = p_chDest->IdxDest;
if (bank->p_chData[idx_dest].Flags.ObjStatus != TSL_OBJ_STATUS_OFF)
{
TSL_GPIO_MODER_IN_Config(p_chSrc->t_sample);
TSL_GPIO_MODER_AF_Config(p_chSrc->t_channel);
}
p_chDest++;
p_chSrc++;
}
/* Start acquisition */
TSL_Acq_Status = TSL_STATUS_BUSY;
TIM9 ->CR1 |= 0x01; // Master
}
else
{
TSL_Acq_Status = TSL_STATUS_OK;
}
}
/**
* @brief Wait end of acquisition
* @param None
* @retval status
*/
TSL_Status_enum_T TSL_acq_BankWaitEOC(void)
{
return TSL_Acq_Status;
}
/**
* @brief Return the current measure
* @param[in] index Index of the measure source
* @retval Measure
*/
TSL_tMeas_T TSL_acq_GetMeas(TSL_tIndex_T index)
{
return(tab_MeasurementCounter[index]);
}
/**
* @brief Check noise (not used)
* @param None
* @retval Status
*/
TSL_AcqStatus_enum_T TSL_acq_CheckNoise(void)
{
return TSL_ACQ_STATUS_OK;
}
/**
* @brief Check GPIO IDR for the sample
* @param[in] sample
* @retval Status
*/
uint8_t TSL_Check_GPIO_IDR(uint8_t sample)
{
GPIO_TypeDef *GPIO;
uint32_t GPIO_IDR_Mask = 0;
GPIO = TSL_GPIO_LookUpTable[TSL_CHANNEL_PORT(sample)];
GPIO_IDR_Mask = (1 << (sample & 0x0F));
if (((GPIO->IDR) & GPIO_IDR_Mask) == GPIO_IDR_Mask)
{
return 1;
}
else
{
return 0;
}
}
/**
* @brief Process the TS Interrupt routine
* @param None
* @retval None
*/
void TSL_acq_ProcessIT(void)
{
CONST TSL_Bank_T *LocalBank = &(TSL_Globals.Bank_Array[0]);
TSL_tNb_T NumberOfBanks = TSLPRM_TOTAL_BANKS;
TSL_tNb_T LocalNumberOfChannels = 0;
TSL_tIndex_T BankIndex;
CONST TSL_ChannelSrc_T *p_chSrc;
CONST TSL_ChannelDest_T *p_chDest;
TSL_tIndex_T idx_dest;
TSL_tIndex_T idx_ch;
TSL_tNb_T CounterOverflowFlag = 0;
CounterOverflowFlag = TIM11->SR & TIM_SR_UIF;
// Reset flags
TIM11->SR = 0;
idx_ch = 0;
p_chDest = bank->p_chDest;
p_chSrc = bank->p_chSrc;
do
{
// Get index in the result array associated to the current channel
idx_dest = p_chDest->IdxDest;
if (bank->p_chData[idx_dest].Flags.ObjStatus != TSL_OBJ_STATUS_OFF)
{
if ((TSL_Check_GPIO_IDR(p_chSrc->t_sample)) &&
((GroupToCheck & (1 << (p_chSrc->IdxSrc))) == (1 << (p_chSrc->IdxSrc))))
{
tab_MeasurementCounter[p_chSrc->IdxSrc] = TIM11->CCR1;
NumberOfChannelChecked++;
GroupToCheck &= (uint32_t)(~(1 << (p_chSrc->IdxSrc)));
// Reset CMR register to restart the timer
TSL_RI_CMR_Config_Clear(p_chSrc->t_sample);
}
// Manage Overflow
else if((CounterOverflowFlag) &&
((GroupToCheck & (1 << (p_chSrc->IdxSrc))) == (1 << (p_chSrc->IdxSrc))))
{
tab_MeasurementCounter[p_chSrc->IdxSrc] = TSLPRM_ACQ_MAX + 1;
GroupToCheck &= (uint32_t)(~(1 << (p_chSrc->IdxSrc)));
// Reset CMR register to restart the timer
TSL_RI_CMR_Config_Clear(p_chSrc->t_sample);
}
}
p_chDest++;
p_chSrc++;
idx_ch++;
}
while (idx_ch < NumberOfChannels);
if (NumberOfChannelChecked >= NumberOfChannelOn)
{
NumberOfChannelOn = 0;
NumberOfChannelChecked = 0;
// Disable master counter
TIM9->CR1 &= (uint16_t)(~0x01);
//====================
// All GPIOs in PP Low
//====================
for (BankIndex = 0; BankIndex < NumberOfBanks; BankIndex++)
{
LocalBank = &(TSL_Globals.Bank_Array[BankIndex]);
p_chSrc = LocalBank->p_chSrc;
#if (TSLPRM_USE_SHIELD > 0)
TSL_GPIO_BR_Config(LocalBank->shield_sample);
TSL_GPIO_BR_Config(LocalBank->shield_channel);
TSL_GPIO_MODER_OUT_Config(LocalBank->shield_sample);
TSL_GPIO_MODER_OUT_Config(LocalBank->shield_channel);
#endif
LocalNumberOfChannels = LocalBank->NbChannels;
for (idx_ch = 0;
idx_ch < LocalNumberOfChannels;
idx_ch++)
{
TSL_GPIO_BR_Config(p_chSrc->t_sample);
TSL_GPIO_BR_Config(p_chSrc->t_channel);
TSL_GPIO_MODER_OUT_Config(p_chSrc->t_sample);
TSL_GPIO_MODER_OUT_Config(p_chSrc->t_channel);
p_chSrc++;
}
}
TSL_Acq_Status = TSL_STATUS_OK;
}
}
/**
* @brief Check if a filter must be used on the current channel (not used)
* @param[in] pCh Pointer on the channel data information
* @retval Result TRUE if a filter can be applied
*/
TSL_Bool_enum_T TSL_acq_UseFilter(TSL_ChannelData_T *pCh)
{
return TSL_TRUE;
}
/**
* @brief Compute the Delta value
* @param[in] ref Reference value
* @param[in] meas Last Measurement value
* @retval Delta value
*/
TSL_tDelta_T TSL_acq_ComputeDelta(TSL_tRef_T ref, TSL_tMeas_T meas)
{
return((TSL_tDelta_T)(ref - meas));
}
/**
* @brief Compute the Measurement value
* @param[in] ref Reference value
* @param[in] delta Delta value
* @retval Measurement value
*/
TSL_tMeas_T TSL_acq_ComputeMeas(TSL_tRef_T ref, TSL_tDelta_T delta)
{
return((TSL_tMeas_T)(ref - delta));
}
/**
* @brief Test if the Reference is incorrect (not used)
* @param[in] pCh Pointer on the channel data information
* @retval Result TRUE if the Reference is out of range
*/
TSL_Bool_enum_T TSL_acq_TestReferenceOutOfRange(TSL_ChannelData_T *pCh)
{
return TSL_FALSE;
}
/**
* @brief Test if the measure has crossed the reference target (not used)
* @param[in] pCh Pointer on the channel data information
* @param[in] new_meas Measure of the last acquisition on this channel
* @retval Result TRUE if the Reference is valid
*/
TSL_Bool_enum_T TSL_acq_TestFirstReferenceIsValid(TSL_ChannelData_T *pCh, TSL_tMeas_T new_meas)
{
return TSL_TRUE;
}
#if defined(__IAR_SYSTEMS_ICC__) // IAR/EWARM
#pragma optimize=medium
#elif defined(__CC_ARM) // Keil/MDK-ARM
#pragma O1
#pragma Ospace
#elif defined(__TASKING__) // Altium/Tasking
#pragma optimize O0
#elif defined(__GNUC__) // Atollic/True Studio + Raisonance/RKit
#pragma GCC push_options
#pragma GCC optimize ("O0")
#endif
/**
* @brief Software delay (private routine)
* @param val Wait delay
* With fHCLK = 32MHz: 1 = ~1µs, 50 = ~14µs, 100 = ~25µs, 200 = ~50µs
* @retval None
*/
void SoftDelay(uint16_t val)
{
__IO uint16_t idx;
for (idx = val; idx > 0; idx--)
{}
}
#if defined(__TASKING__)
#pragma endoptimize
#endif
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/