summaryrefslogtreecommitdiff
path: root/vdp.cpp
blob: d8ca0260ca2865605fc8ffb3131968d8608a2e52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/* SPDX-License-Identifier: Unlicense
 */

#include "vdp.hpp"
#include "musashi-m68k/m68k.h"
#include "utils.hpp"

#include <cassert>
#include <cstring>
#include <cstdio>

#define REG_VAL_GET(reg, mask, shift) (((reg) & ((mask) << (shift))) >> (shift))
#define REG_VAL_SET(reg, mask, shift, v) \
    ((reg) = ((reg) & ~((mask) << (shift))) | ((v & (mask)) << (shift)))

/// DISP: Enable (1) / Disable (0) Display
#define MODESET2_DISP_MASK (1)
#define MODESET2_DISP_SHIFT (6)
#define MODESET2_DISP_GET(reg) REG_VAL_GET(reg, MODESET2_DISP_MASK, MODESET2_DISP_SHIFT)
#define MODESET2_DISP_SET(reg, v) REG_VAL_SET(reg, MODESET2_DISP_MASK, MODESET2_DISP_SHIFT, v)

/// IE0: Enable (1) / Disable (0) V interrupt (IRQ 6)
#define MODESET2_IE0_MASK (1)
#define MODESET2_IE0_SHIFT (5)
#define MODESET2_IE0_GET(reg) REG_VAL_GET(reg, MODESET2_IE0_MASK, MODESET2_IE0_SHIFT)
#define MODESET2_IE0_SET(reg, v) REG_VAL_SET(reg, MODESET2_IE0_MASK, MODESET2_IE0_SHIFT, v)

/// M1: Enable (1) / Disable (0) DMA
#define MODESET2_M1_MASK (1)
#define MODESET2_M1_SHIFT (4)
#define MODESET2_M1_GET(reg) REG_VAL_GET(reg, MODESET2_M1_MASK, MODESET2_M1_SHIFT)
#define MODESET2_M1_SET(reg, v) REG_VAL_SET(reg, MODESET2_M1_MASK, MODESET2_M1_SHIFT, v)

/// M2: V 30 (1) / V 28 (0) cell mode (PAL mode, always 0 in NTSC mdoe)
#define MODESET2_M2_MASK (1)
#define MODESET2_M2_SHIFT (3)
#define MODESET2_M2_GET(reg) REG_VAL_GET(reg, MODESET2_M2_MASK, MODESET2_M2_SHIFT)
#define MODESET2_M2_SET(reg, v) REG_VAL_SET(reg, MODESET2_M2_MASK, MODESET2_M2_SHIFT, v)

#define SCROLLA_ADDR_MASK (0x38)
#define SCROLLA_ADDR_SHIFT (10)
#define SCROLLA_ADDR_GET(reg) \
    ((((uint16_t)(reg)) & (SCROLLA_ADDR_MASK)) << SCROLLA_ADDR_SHIFT)
#define SCROLLA_ADDR_SET(reg, v) \
    ((reg) = ((reg) & ~SCROLLA_ADDR_MASK) \
                | (((uint16_t)(v) >> SCROLLA_ADDR_SHIFT) & SCROLLA_ADDR_MASK))

#define SCROLLB_ADDR_MASK (7)
#define SCROLLB_ADDR_SHIFT (13)
#define SCROLLB_ADDR_GET(reg) \
    ((((uint16_t)(reg)) & (SCROLLB_ADDR_MASK)) << SCROLLB_ADDR_SHIFT)
#define SCROLLB_ADDR_SET(reg, v) \
    ((reg) = ((reg) & ~SCROLLB_ADDR_MASK) \
                | (((uint16_t)(v) >> SCROLLB_ADDR_SHIFT) & SCROLLB_ADDR_MASK))

#define HSCROLL_TABLE_ADDR_MASK (0x3f)
#define HSCROLL_TABLE_ADDR_SHIFT (10)
#define HSCROLL_TABLE_ADDR_GET(reg) \
    ((((uint16_t)(reg)) & (HSCROLL_TABLE_ADDR_MASK)) << HSCROLL_TABLE_ADDR_SHIFT)
#define HSCROLL_TABLE_ADDR_SET(reg, v) \
    ((reg) = ((reg) & ~HSCROLL_TABLE_ADDR_MASK) \
                | (((uint16_t)(v) >> HSCROLL_TABLE_ADDR_SHIFT) & HSCROLL_TABLE_ADDR_MASK))

// 0: V32 CELL, 1: V64 CELL, 2: Prohibited, 3: V128 CELL
#define SCROLLSIZE_VCELL_MASK (3)
#define SCROLLSIZE_VCELL_SHIFT (4)
#define SCROLLSIZE_VCELL_GET(reg) REG_VAL_GET(reg, SCROLLSIZE_VCELL_MASK, SCROLLSIZE_VCELL_SHIFT)
#define SCROLLSIZE_VCELL_SET(reg, v) REG_VAL_SET(reg, SCROLLSIZE_VCELL_MASK, SCROLLSIZE_VCELL_SHIFT, v)

// 0: H32 CELL, 1: H64 CELL, 2: Prohibited, 3: H128 CELL
#define SCROLLSIZE_HCELL_MASK (3)
#define SCROLLSIZE_HCELL_SHIFT (0)
#define SCROLLSIZE_HCELL_GET(reg) REG_VAL_GET(reg, SCROLLSIZE_HCELL_MASK, SCROLLSIZE_HCELL_SHIFT)
#define SCROLLSIZE_HCELL_SET(reg, v) REG_VAL_SET(reg, SCROLLSIZE_HCELL_MASK, SCROLLSIZE_HCELL_SHIFT, v)

#define BGCOLOR_COLOR_MASK (3)
#define BGCOLOR_COLOR_SHIFT (0)
#define BGCOLOR_COLOR_GET(reg) REG_VAL_GET(reg, BGCOLOR_COLOR_MASK, BGCOLOR_COLOR_SHIFT)
#define BGCOLOR_COLOR_SET(reg, v) REG_VAL_SET(reg, BGCOLOR_COLOR_MASK, BGCOLOR_COLOR_SHIFT, v)

#define BGCOLOR_PALETTE_MASK (3)
#define BGCOLOR_PALETTE_SHIFT (4)
#define BGCOLOR_PALETTE_GET(reg) REG_VAL_GET(reg, BGCOLOR_PALETTE_MASK, BGCOLOR_PALETTE_SHIFT)
#define BGCOLOR_PALETTE_SET(reg, v) REG_VAL_SET(reg, BGCOLOR_PALETTE_MASK, BGCOLOR_PALETTE_SHIFT, v)

#define DMASRCADRHIGH_DMD_MASK (3)
#define DMASRCADRHIGH_DMD_SHIFT (6)
#define DMASRCADRHIGH_DMD_GET(reg) REG_VAL_GET(reg, DMASRCADRHIGH_DMD_MASK, DMASRCADRHIGH_DMD_SHIFT)
#define DMASRCADRHIGH_DMD_SET(reg, v) REG_VAL_SET(reg, DMASRCADRHIGH_DMD_MASK, DMASRCADRHIGH_DMD_SHIFT, v)

static constexpr size_t BitsCountToMask(const size_t bits)
{
    return bits ? ((1 << bits) | BitsCountToMask(bits - 1)) : 0;
}

static constexpr size_t kCellWidthPixels = 8;
static constexpr size_t kCellHeightPixels = 8;
static constexpr size_t kPixelsPerByte = 2;
static constexpr size_t kBitsPerPixel = 4;
// Only 10 bits are effective in scroll speed value
static constexpr uint16_t kHscrollSpeedMask = BitsCountToMask(10);
// Each pixel has 4 bit depth color
static constexpr uint16_t kPixelColorMask = BitsCountToMask(kBitsPerPixel);

uint32_t VDP::Read(const uint32_t offset, const enum bitness bitness)
{
    uint32_t ret{};
    if (DEBUG_TRACE_VDP_ACCESS) {
        printf(
                "VDP r%d%s @0x%08x",
                bitness * 8,
                (bitness <= 1 ? " " : ""),
                base_address + offset);
    }
    if (bitness == BITNESS_32) {
        if (offset == 0) {
            ret = readData(_address_mode, _address & 0xfffe) << 16;
            _address += _reg[static_cast<size_t>(RegID::kAutoIncrement)];
            ret |= readData(_address_mode, _address & 0xfffe);
            _address += _reg[static_cast<size_t>(RegID::kAutoIncrement)];
        } else if (offset == 4) {
            ret = readStatusRegister() | (readStatusRegister() << 16);
        }
    } else if (bitness == BITNESS_16) {
        if (offset == 0 || offset == 2) {
            ret = readData(_address_mode, _address & 0xfffe);
            _address += _reg[static_cast<size_t>(RegID::kAutoIncrement)];
        } else if (offset == 4 || offset == 6) {
            ret = readStatusRegister();
        }
    }
    // XXX: Ignore 8-bit reads for now
    if (DEBUG_TRACE_VDP_ACCESS) {
        printf("\n");
    }
    return ret;
}

void VDP::Write(const uint32_t offset, const enum bitness bitness, const uint32_t value)
{
    if (DEBUG_TRACE_VDP_ACCESS) {
        printf(
                "VDP w%d%s @0x%08x 0x%0*x",
                bitness * 8,
                (bitness <= 1 ? " " : ""),
                base_address + offset,
                bitness * 2,
                value);
    }
    if (_dma_ready) {
        _dma_ready = false;
        if (DEBUG_TRACE_VDP_ACCESS) {
            printf(": Running DMA VRAM Fill");
        }
        const uint16_t destination_address = _address;
        const uint16_t transfer_size =
            _reg[static_cast<size_t>(RegID::kDMALengthCounterLow)] |
            (_reg[static_cast<size_t>(RegID::kDMALengthCounterHigh)] << 8);
        const uint8_t increment = _reg[static_cast<size_t>(RegID::kAutoIncrement)];
        runDMAVRAMFill(
                baseFromAddressMode(_address_mode),
                destination_address,
                transfer_size,
                increment,
                value);
        _address += transfer_size * increment / 2;
    } else if (bitness == BITNESS_32) {
        if (offset == 0) {
            writeData(_address_mode, _address & 0xfffe, (value >> 16) & 0xffff);
            _address += _reg[static_cast<size_t>(RegID::kAutoIncrement)];
            writeData(_address_mode, _address & 0xfffe, value & 0xffff);
            _address += _reg[static_cast<size_t>(RegID::kAutoIncrement)];
        } else if (offset == 4) {
            writeControl((value >> 16) & 0xffff);
            writeControl(value & 0xffff);
        }
    } else if (bitness == BITNESS_16) {
        if (offset == 0 || offset == 2) {
            writeData(_address_mode, _address & 0xfffe, value & 0xffff);
            _address += _reg[static_cast<size_t>(RegID::kAutoIncrement)];
        } else if (offset == 4 || offset == 6) {
            writeControl(value & 0xffff);
        }
    }
    // XXX: Ignore 8-bit writes for now
    if (DEBUG_TRACE_VDP_ACCESS) {
        printf("\n");
    }
}

static inline size_t scrollsize_cells_count(uint8_t xcell_value)
{
    assert(xcell_value <= 3);
    // It actually returns 96 when xcell_value == 2, but it is prohibited and we
    // just assume that this is not the case.
    return (xcell_value + 1) * 32;
}

static inline uint32_t RenderColorFromCRAM(uint16_t color)
{
    const uint32_t blue = ((color >> 9) & 7) << 5;
    const uint32_t green = ((color >> 5) & 7) << 5;
    const uint32_t red = ((color >> 1) & 7) << 5;
    return 0xff000000 | (red << 16) | (green << 8) | blue;
}

static inline uint32_t GetU32BE(const void *buf)
{
    return
        (static_cast<uint32_t>(reinterpret_cast<const uint8_t*>(buf)[0]) << 24) |
        (static_cast<uint32_t>(reinterpret_cast<const uint8_t*>(buf)[1]) << 16) |
        (static_cast<uint32_t>(reinterpret_cast<const uint8_t*>(buf)[2]) << 8) |
        (static_cast<uint32_t>(reinterpret_cast<const uint8_t*>(buf)[3]) << 0);
}

static inline uint16_t GetU16BE(const void *buf)
{
    return
        (static_cast<uint16_t>(reinterpret_cast<const uint8_t*>(buf)[0]) << 8) |
        (static_cast<uint16_t>(reinterpret_cast<const uint8_t*>(buf)[1]) << 0);
}

void VDP::renderScrollLine(
        const size_t line_index,
        const uint16_t plane_addr,
        const uint16_t hscroll_table_addr,
        const size_t plane_index,
        const size_t hcell_count)
{
    const size_t hscroll =
        GetU16BE(_vram + hscroll_table_addr + sizeof(uint16_t) * plane_index) & kHscrollSpeedMask;
    const size_t cy = line_index / kCellHeightPixels;
    const size_t y = line_index % kCellHeightPixels;
    for (size_t cx = 0; cx < hcell_count; cx++) {
        const uint16_t sprite_id = GetU16BE(
                _vram + plane_addr + (cy * hcell_count + cx) * sizeof(uint16_t));
        // Fetch whole 8 pixel (32 bit) line of sprite
        const uint32_t val = GetU32BE(
                _vram + (sprite_id * kCellHeightPixels + y) * (kCellWidthPixels / kPixelsPerByte));
        for (size_t x = 0; x < kCellWidthPixels; x++) {
            const size_t render_offset_x = (cx * kCellWidthPixels + x + hscroll) %
                (hcell_count * kCellWidthPixels);
            if (render_offset_x >= kRenderWidth) {
                continue;
            }
            const size_t color_index =
                (val >> ((kCellWidthPixels - 1 - x) * kBitsPerPixel)) & kPixelColorMask;
            const uint16_t bgcolor_reg = _reg[static_cast<size_t>(RegID::kBackgroundColor)];
            const uint16_t bgcolor_color = BGCOLOR_COLOR_GET(bgcolor_reg);
            const uint16_t bgcolor_palette = BGCOLOR_PALETTE_GET(bgcolor_reg);
            // TODO compare current palette too
            (void) bgcolor_palette;
            if (color_index == bgcolor_color) {
                // Do not render anything - background color means transparency
                continue;
            }
            const uint16_t cram_color = GetU16BE(_cram + color_index * sizeof(uint16_t));
            const uint32_t color = RenderColorFromCRAM(cram_color);
            const size_t render_offset =
                ((cy * kCellHeightPixels + y) * kRenderWidth) + render_offset_x;
            _rendered_buffer[render_offset] = color;
        }
    }
}

void VDP::renderScrollBLine(const size_t line_index, const size_t hcell_count)
{
    const uint16_t plane_addr = SCROLLB_ADDR_GET(_reg[static_cast<size_t>(RegID::kScrollBAddress)]);
    const size_t hscroll_table_addr =
        HSCROLL_TABLE_ADDR_GET(_reg[static_cast<size_t>(RegID::kHScrollTableAddress)]);
    renderScrollLine(line_index, plane_addr, hscroll_table_addr, 1, hcell_count);
}

void VDP::renderScrollALine(const size_t line_index, const size_t hcell_count)
{
    const uint16_t plane_addr = SCROLLA_ADDR_GET(_reg[static_cast<size_t>(RegID::kScrollAAddress)]);
    const size_t hscroll_table_addr =
        HSCROLL_TABLE_ADDR_GET(_reg[static_cast<size_t>(RegID::kHScrollTableAddress)]);
    renderScrollLine(line_index, plane_addr, hscroll_table_addr, 0, hcell_count);
}

bool VDP::Scanline()
{
    const uint16_t mode_set_2 = _reg[static_cast<size_t>(RegID::kModeSet2)];
    if (!MODESET2_DISP_GET(mode_set_2)) {
        return true;
    }
    const uint16_t lines_per_screen = _status.pal_mode ? kLinesPerScreenPAL : kLinesPerScreenNTSC;
    memset(
            _rendered_buffer + kRenderWidth * _lines_counter,
            0,
            kRenderWidth * sizeof(*_rendered_buffer));
    if (_lines_counter >= (int)kRenderHeight) {
        // just render palette
        for (size_t i = 0; i < kRenderWidth; i++) {
            const size_t color_index = (i * 2) % kCRAMSize;
            const uint16_t cram_color = GetU16BE(_cram +color_index * sizeof(uint16_t));
            const uint32_t color = RenderColorFromCRAM(cram_color);
            _rendered_buffer[kRenderWidth * _lines_counter + i] = color;
        }
    } else {
        // Render sprites
        const uint8_t scrollsize_reg = _reg[static_cast<size_t>(RegID::kScrollSize)];
        const uint8_t vcell = SCROLLSIZE_VCELL_GET(scrollsize_reg);
        const uint8_t hcell = SCROLLSIZE_HCELL_GET(scrollsize_reg);
        // 2 is prohibited value, so we just won't render if it is set
        if (vcell != 2 && hcell != 2) {
            const size_t hcell_count = scrollsize_cells_count(hcell);
            renderScrollBLine(_lines_counter, hcell_count);
            renderScrollALine(_lines_counter, hcell_count);
        }
    }
    _lines_counter++;
    if (_lines_counter >= lines_per_screen) {
        _lines_counter = 0;
        if (MODESET2_IE0_GET(mode_set_2)) {
            m68k_set_irq(M68K_IRQ_6);
            _status.vblank = true;
            return true;
        }
    }
    _status.vblank = false;
    return false;
}

void VDP::Reset()
{
    _status = {};
    _control_write_second_word = {};
    _dma_ready = {};
    _lines_counter = {};
    _address_mode = {};
    _address = {};
    memset(_reg, 0, kRegistersCount);
    memset(_vram, 0, kVRAMSize);
    memset(_cram, 0, kCRAMSize);
    memset(_vsram, 0, kVSRAMSize);
}

static inline bool IsWriteToReg(const uint16_t value)
{
    return ((value >> 13) & 0x7) == 4;
}

void VDP::writeData(const uint8_t address_mode, const uint16_t address, const uint16_t value)
{
    switch (static_cast<AddressMode>(address_mode & 0xf)) {
    case AddressMode::kVRAMWrite:
        if (address >= kVRAMSize) {
            if (DEBUG_TRACE_VDP_ACCESS) {
                printf(": VRAM @0x%04x: invalid address, ignoring", address);
            }
            return;
        }
        if (DEBUG_TRACE_VDP_ACCESS) {
            printf(": VRAM @0x%04x 0x%04x", address, value);
        }
        _vram[address] = (value >> 8) & 0xff;;
        _vram[address + 1] = value & 0xff;;
        return;
    case AddressMode::kCRAMWrite:
        if (address >= kCRAMSize) {
            if (DEBUG_TRACE_VDP_ACCESS) {
                printf(": CRAM @0x%04x: invalid address, ignoring", address);
            }
            return;
        }
        if (DEBUG_TRACE_VDP_ACCESS) {
            printf(": CRAM @0x%04x 0x%04x", address, value);
        }
        _cram[address] = (value >> 8) & 0xff;;
        _cram[address + 1] = value & 0xff;;
        return;
    case AddressMode::kVSRAMWrite:
        if (address >= kVSRAMSize) {
            if (DEBUG_TRACE_VDP_ACCESS) {
                printf(": VSRAM @0x%04x: invalid address, ignoring", address);
            }
            return;
        }
        if (DEBUG_TRACE_VDP_ACCESS) {
            printf(": VSRAM @0x%04x 0x%04x", address, value);
        }
        _vsram[address] = (value >> 8) & 0xff;;
        _vsram[address + 1] = value & 0xff;;
        return;
    case AddressMode::kVRAMRead:
    case AddressMode::kCRAMRead:
    case AddressMode::kVSRAMRead:
        break;
    }
    if (DEBUG_TRACE_VDP_ACCESS) {
        printf(
                ": 0x%02x(%s): invalid address_mode",
                address_mode,
                addressModeToString(address_mode));
    }
}

void VDP::writeControl(const uint16_t value)
{
    if (_control_write_second_word) {
        // Write second word
        //   0   0   0   0   0   0   0   0
        // CD5 CD4 CD3 CD2   0   0 A15 A14
        _address |= (value & 0x3) << 14;
        _address_mode |= ((value >> 4) & 0xf) << 2;
        _control_write_second_word = false;
        if (DEBUG_TRACE_VDP_ACCESS) {
            printf(
                    ": New address_mode=0x%02x(%s), address=0x%04x",
                    _address_mode,
                    addressModeToString(_address_mode),
                    _address);
        }
        const uint16_t mode_set_2 = _reg[static_cast<size_t>(RegID::kModeSet2)];
        const uint8_t dma_address_mode = (_address_mode >> 4) & 0x3;
        if (MODESET2_M1_GET(mode_set_2) && dma_address_mode) {
            const uint16_t destination_address = _address;
            const uint16_t transfer_size =
                _reg[static_cast<size_t>(RegID::kDMALengthCounterLow)] |
                (_reg[static_cast<size_t>(RegID::kDMALengthCounterHigh)] << 8);
            const uint8_t increment = _reg[static_cast<size_t>(RegID::kAutoIncrement)];
            const uint8_t dma_action =
                DMASRCADRHIGH_DMD_GET(_reg[static_cast<size_t>(RegID::kDMASourceAddressHigh)]);
            switch (dma_action) {
            case 0:
            case 1:
                {
                    if (DEBUG_TRACE_VDP_ACCESS) {
                        printf(": Running DMA Memory to VRAM");
                    }
                    const uint32_t source_address =
                        _reg[static_cast<size_t>(RegID::kDMASourceAddressLow)] |
                        (_reg[static_cast<size_t>(RegID::kDMASourceAddressMid)] << 8) |
                        ((_reg[static_cast<size_t>(RegID::kDMASourceAddressHigh)] & 0x3f) << 16);
                    runDMAMemoryToVRAM(
                            baseFromAddressMode(_address_mode),
                            source_address,
                            destination_address,
                            transfer_size,
                            increment);
                    _address += transfer_size * increment / 2;
                }
                break;
            case 2:
                {
                    if (DEBUG_TRACE_VDP_ACCESS) {
                        printf(": Ready to run DMA VRAM Fill");
                    }
                    _dma_ready = true;
                }
                break;
            case 3:
                {
                    if (DEBUG_TRACE_VDP_ACCESS) {
                        printf(": Running DMA VRAM Copy");
                    }
                    runDMAVRAMCopy(baseFromAddressMode(_address_mode));
                    _address += transfer_size * increment / 2;
                }
                break;
            }
        }
    } else if (IsWriteToReg(value)) {
        // Write register
        //   1   0   0 RS4 RS3 RS2 RS1 RS0
        //  D7  D6  D5  D4  D3  D2  D1  D0
        const uint8_t reg_num = (value >> 8) & 0x1f;
        const uint8_t reg_val = value & 0xff;
        if (DEBUG_TRACE_VDP_ACCESS) {
            printf(
                    ": reg 0x%02x(%s) = 0x%02x",
                    reg_num,
                    regIDToString(static_cast<RegID>(reg_num)),
                    reg_val);
        }
        _reg[reg_num] = reg_val;
        // TODO print warnings of all invalid values or writes that ignore a mask
    } else if (!_control_write_second_word) {
        // Write first word
        // CD1 CD0 A13 A12 A11 A10  A9  A8
        //  A7  A6  A5  A4  A3  A2  A1  A0
        _address = value & 0x3fff;
        _address_mode = (value >> 14) & 0x3;
        _control_write_second_word = true;
    }
}

uint16_t VDP::readData(const uint8_t address_mode, const uint16_t address)
{
    switch (static_cast<AddressMode>(address_mode & 0xf)) {
    case AddressMode::kVRAMWrite:
    case AddressMode::kCRAMWrite:
    case AddressMode::kVSRAMWrite:
        break;
    case AddressMode::kVRAMRead:
        if (address >= kVRAMSize) {
            if (DEBUG_TRACE_VDP_ACCESS) {
                printf(": VRAM @0x%04x: invalid address, ignoring", address);
            }
            return 0;
        } else {
            const uint16_t value = (_vram[address] << 8) | _vram[address + 1];
            if (DEBUG_TRACE_VDP_ACCESS) {
                printf(": VRAM @0x%04x 0x%04x", address, value);
            }
            return value;
        }
    case AddressMode::kCRAMRead:
        if (address >= kCRAMSize) {
            if (DEBUG_TRACE_VDP_ACCESS) {
                printf(": CRAM @0x%04x: invalid address, ignoring", address);
            }
            return 0;
        } else {
            const uint16_t value = (_cram[address] << 8) | _cram[address + 1];
            if (DEBUG_TRACE_VDP_ACCESS) {
                printf(": CRAM @0x%04x 0x%04x", address, value);
            }
            return value;
        }
    case AddressMode::kVSRAMRead:
        if (address >= kVSRAMSize) {
            if (DEBUG_TRACE_VDP_ACCESS) {
                printf(": VSRAM @0x%04x: invalid address, ignoring", address);
            }
            return 0;
        } else {
            const uint16_t value = (_vsram[address] << 8) | _vsram[address + 1];
            if (DEBUG_TRACE_VDP_ACCESS) {
                printf(": VSRAM @0x%04x 0x%04x", address, value);
            }
            return value;
        }
    }
    if (DEBUG_TRACE_VDP_ACCESS) {
        printf(
                ": 0x%02x(%s): invalid address_mode",
                address_mode,
                addressModeToString(address_mode));
    }
    return 0;
}

uint16_t VDP::readStatusRegister() const
{
    const uint16_t value = 0
        | (!_status.fifo_not_empty << 9)
        | (_status.fifo_full << 8)
        | (_status.v_irq << 7)
        | (_status.sprites_overflow << 6)
        | (_status.sprites_collision << 5)
        | (_status.odd_frame << 4)
        | (_status.vblank << 3)
        | (_status.hblank << 2)
        | (_status.dma_busy << 1)
        | (_status.pal_mode << 0)
        ;
    if (DEBUG_TRACE_VDP_ACCESS) {
        printf(": Status %04x", value);
    }
    return value;
}

uint8_t* VDP::baseFromAddressMode(uint8_t address_mode)
{
    switch (static_cast<AddressMode>(address_mode & 0xf)) {
    case AddressMode::kVRAMWrite:
        return _vram;
    case AddressMode::kCRAMWrite:
        return _cram;
    case AddressMode::kVSRAMWrite:
        return _vsram;
    case AddressMode::kVRAMRead:
        return _vram;
    case AddressMode::kCRAMRead:
        return _cram;
    case AddressMode::kVSRAMRead:
        return _vsram;
    }
    UNREACHABLE;
    return nullptr;
}

const char* VDP::addressModeToString(const uint8_t address_mode)
{
    // Bits other than CD5-CD0 cannot be set
    assert((address_mode >> 6) == 0);
    const uint8_t dma_address_mode = (address_mode >> 4) & 0x3;
    switch (static_cast<AddressMode>(address_mode & 0xf)) {
    case AddressMode::kVRAMWrite:
        switch (dma_address_mode) {
        case 0:
            return "VRAM write";
        case 1:
            return "DMA ???, VRAM write";
        case 2:
            return "DMA Memory to VRAM/VRAM fill, VRAM write";
        case 3:
            return "DMA VRAM copy, VRAM write";
        }
        break;
    case AddressMode::kCRAMWrite:
        switch (dma_address_mode) {
        case 0:
            return "CRAM write";
        case 1:
            return "DMA ???, CRAM write";
        case 2:
            return "DMA Memory to VRAM/VRAM fill, CRAM write";
        case 3:
            return "DMA VRAM copy, CRAM write";
        }
        break;
    case AddressMode::kVSRAMWrite:
        switch (dma_address_mode) {
        case 0:
            return "VSRAM write";
        case 1:
            return "DMA ???, VSRAM write";
        case 2:
            return "DMA Memory to VRAM/VRAM fill, VSRAM write";
        case 3:
            return "DMA VRAM copy, VSRAM write";
        }
        break;
    case AddressMode::kVRAMRead:
        switch (dma_address_mode) {
        case 0:
            return "VRAM read";
        case 1:
            return "DMA ???, VRAM read";
        case 2:
            return "DMA Memory to VRAM/VRAM fill, VRAM read";
        case 3:
            return "DMA VRAM copy, VRAM read";
        }
        break;
    case AddressMode::kCRAMRead:
        switch (dma_address_mode) {
        case 0:
            return "CRAM read";
        case 1:
            return "DMA ???, CRAM read";
        case 2:
            return "DMA Memory to VRAM/VRAM fill, CRAM read";
        case 3:
            return "DMA VRAM copy, CRAM read";
        }
        break;
    case AddressMode::kVSRAMRead:
        switch (dma_address_mode) {
        case 0:
            return "VSRAM read";
        case 1:
            return "DMA ???, VSRAM read";
        case 2:
            return "DMA Memory to VRAM/VRAM fill, VSRAM read";
        case 3:
            return "DMA VRAM copy, VSRAM read";
        }
        break;
    }
    UNREACHABLE;
    return "Unknown";
}

const char* VDP::regIDToString(const RegID reg_id)
{
    switch (reg_id) {
    case RegID::kModeSet1:
        return "ModeSet1";
    case RegID::kModeSet2:
        return "ModeSet2";
    case RegID::kScrollAAddress:
        return "ScrollAAddress";
    case RegID::kWindowAddress:
        return "WindowAddress";
    case RegID::kScrollBAddress:
        return "ScrollBAddress";
    case RegID::kSpritesTableAddress:
        return "SpritesTableAddress";
    case RegID::kBackgroundColor:
        return "BackgroundColor";
    case RegID::kHint:
        return "Hint";
    case RegID::kModeSet3:
        return "ModeSet3";
    case RegID::kModeSet4:
        return "ModeSet4";
    case RegID::kHScrollTableAddress:
        return "HScrollTableAddress";
    case RegID::kAutoIncrement:
        return "AutoIncrement";
    case RegID::kScrollSize:
        return "ScrollSize";
    case RegID::kWindowHorizontalPosition:
        return "WindowHorizontalPosition";
    case RegID::kWindowVertialPosition:
        return "WindowVertialPosition";
    case RegID::kDMALengthCounterLow:
        return "DMACounterLow";
    case RegID::kDMALengthCounterHigh:
        return "DMACounterHigh";
    case RegID::kDMASourceAddressLow:
        return "DMASourceAddressLow";
    case RegID::kDMASourceAddressMid:
        return "DMASourceAddressMid";
    case RegID::kDMASourceAddressHigh:
        return "DMASourceAddressHigh";
    case RegID::kRegistersCount:
        break;
    }
    return "Unknown";
}

void VDP::runDMAMemoryToVRAM(
        uint8_t* const base,
        const uint32_t source_address,
        const uint16_t destination_address,
        const uint16_t transfer_size,
        const uint8_t increment)
{
    constexpr size_t kDumpWidth = 16;
    for (size_t i = 0, o = 0; i < transfer_size; i += 2, o += increment) {
        const uint32_t src_addr = source_address + i;
        const uint32_t dst_addr = destination_address + o;
        const uint16_t value = m68k_read_memory_16(src_addr);
        if (DEBUG_TRACE_VDP_ACCESS) {
            if (i % kDumpWidth == 0) {
                printf("\n%06x:%06x: ", src_addr, dst_addr);
            }
            printf("%04x ", value);
        }
        base[dst_addr + 0] = (value >> 8) & 0xff;
        base[dst_addr + 1] = value & 0xff;
    }
}

void VDP::runDMAVRAMFill(
        uint8_t* const base,
        const uint16_t destination_address,
        const uint16_t transfer_size,
        const uint8_t increment,
        const uint16_t filler)
{
    if (DEBUG_TRACE_VDP_ACCESS) {
        printf(
                "\nVDP DMA Fill @%06x..%06x = 0x%04x",
                destination_address,
                destination_address + transfer_size,
                filler);
    }
    for (size_t i = 0, o = 0; i < transfer_size; i += 2, o += increment) {
        // TODO: There must some complex byte order shit be happening, depending
        // on odd/even destination address
        const uint16_t dst_addr = destination_address + o;
        const uint16_t value = filler;
        base[dst_addr + 0] = (value >> 8) & 0xff;
        base[dst_addr + 1] = value & 0xff;
    }
}

void VDP::runDMAVRAMCopy(uint8_t* base)
{
    (void) base;
    // TODO
}