summaryrefslogtreecommitdiff
path: root/disasm.cpp
blob: c75f794b8443678dcc8bd17f3caaac81365460ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
#include "disasm.h"
#include "data_buffer.h"
#include "common.h"

#include <cassert>
#include <cstdio>
#include <cstdlib>
#include <cstring>

enum class JType {
    kJsr,
    kJmp,
};

enum class MoveDirection: bool {
    kRegisterToMemory = 0,
    kMemoryToRegister = 1,
};

enum class OpSize: int {
    kByte = 0,
    kWord = 1,
    kLong = 2,
    kInvalid = 3,
};

enum class AddrMode: uint8_t {
    kInvalid = 0,
    kDn,
    kAn,
    kAnAddr,
    kAnAddrIncr,
    kAnAddrDecr,
    kD16AnAddr,
    kD8AnXiAddr,
    kWord,
    kLong,
    kD16PCAddr,
    kD8PCXiAddr,
    kImmediate,
};

struct AddrModeArg {
    AddrMode mode{};
    uint8_t m{};
    uint8_t xn{}; /// Xn register number: 0..7
    char r{}; /// Xi register type specifier letter: either 'd' or 'a'
    uint8_t xi{}; /// Xi register number: 0..7
    char s{}; /// Size spec letter of Xi or imm: either 'w' or 'l'
    int32_t value{}; /// Word, Long or Immediate
    /// Size of the extension: 0, 2 or 4 bytes
    constexpr size_t Size() const
    {
        switch (mode) {
        case AddrMode::kInvalid:
        case AddrMode::kDn:
        case AddrMode::kAn:
        case AddrMode::kAnAddr:
        case AddrMode::kAnAddrIncr:
        case AddrMode::kAnAddrDecr:
            return 0;
        case AddrMode::kD16AnAddr:
        case AddrMode::kD8AnXiAddr:
        case AddrMode::kWord:
            return 2;
        case AddrMode::kLong:
            return 4;
        case AddrMode::kD16PCAddr:
        case AddrMode::kD8PCXiAddr:
            return 2;
        case AddrMode::kImmediate:
            return s == 'l' ? 4 : 2;
        }
        return 0;
    }
    static constexpr AddrModeArg Dn(uint8_t m, uint8_t xn)
    {
        return AddrModeArg{AddrMode::kDn, m, xn};
    }
    static constexpr AddrModeArg An(uint8_t m, uint8_t xn)
    {
        return AddrModeArg{AddrMode::kAn, m, xn};
    }
    static constexpr AddrModeArg AnAddr(uint8_t m, uint8_t xn)
    {
        return AddrModeArg{AddrMode::kAnAddr, m, xn};
    }
    static constexpr AddrModeArg AnAddrIncr(uint8_t m, uint8_t xn)
    {
        return AddrModeArg{AddrMode::kAnAddrIncr, m, xn};
    }
    static constexpr AddrModeArg AnAddrDecr(uint8_t m, uint8_t xn)
    {
        return AddrModeArg{AddrMode::kAnAddrDecr, m, xn};
    }
    static constexpr AddrModeArg D16AnAddr(uint8_t m, uint8_t xn, int16_t d16)
    {
        return AddrModeArg{AddrMode::kD16AnAddr, m, xn, 0, 0, 0, d16};
    }
    static constexpr AddrModeArg D8AnXiAddr(
            uint8_t m, uint8_t xn, char r, uint8_t xi, char s, int8_t d8)
    {
        return AddrModeArg{AddrMode::kD8AnXiAddr, m, xn, r, xi, s, d8};
    }
    static constexpr AddrModeArg Word(uint8_t m, uint8_t xn, int16_t w)
    {
        return AddrModeArg{AddrMode::kWord, m, xn, 0, 0, 0, w};
    }
    static constexpr AddrModeArg Long(uint8_t m, uint8_t xn, int32_t l)
    {
        return AddrModeArg{AddrMode::kLong, m, xn, 0, 0, 0, l};
    }
    static constexpr AddrModeArg D16PCAddr(uint8_t m, uint8_t xn, int16_t d16)
    {
        return AddrModeArg{AddrMode::kD16PCAddr, m, xn, 0, 0, 0, d16};
    }
    static constexpr AddrModeArg D8PCXiAddr(
            uint8_t m, uint8_t xn, char r, uint8_t xi, char s, int8_t d8)
    {
        return AddrModeArg{AddrMode::kD8PCXiAddr, m, xn, r, xi, s, d8};
    }
    static constexpr AddrModeArg Immediate(uint8_t m, uint8_t xn, char s, int32_t value)
    {
        return AddrModeArg{AddrMode::kImmediate, m, xn, 0, 0, s, value};
    }
    static constexpr AddrModeArg Fetch(
            const uint32_t offset, const DataBuffer &code, int16_t instr, char s)
    {
        const int addrmode = instr & 0x3f;
        const int m = (addrmode >> 3) & 7;
        const int xn = addrmode & 7;
        return Fetch(offset, code, m, xn, s);
    }
    static inline constexpr AddrModeArg Fetch(
            uint32_t offset, const DataBuffer &code, int m, int xn, char s);
    int SNPrint(char *const buf, const size_t bufsz) const
    {
        switch (mode) {
        case AddrMode::kInvalid:
            assert(false);
            break;
        case AddrMode::kDn:
            return snprintf(buf, bufsz, "%%d%d", xn);
        case AddrMode::kAn:
            return snprintf(buf, bufsz, "%%a%u", xn);
        case AddrMode::kAnAddr:
            return snprintf(buf, bufsz, "%%a%u@", xn);
        case AddrMode::kAnAddrIncr:
            return snprintf(buf, bufsz, "%%a%u@+", xn);
        case AddrMode::kAnAddrDecr:
            return snprintf(buf, bufsz, "%%a%u@-", xn);
        case AddrMode::kD16AnAddr:
            return snprintf(buf, bufsz, "%%a%u@(%d:w)", xn, value);
        case AddrMode::kD8AnXiAddr:
            return snprintf(buf, bufsz, "%%a%u@(%d,%%%c%d:%c)", xn, value, r, xi, s);
        case AddrMode::kWord:
            return snprintf(buf, bufsz, "0x%x:w", value);
        case AddrMode::kLong:
            return snprintf(buf, bufsz, "0x%x:l", value);
        case AddrMode::kD16PCAddr:
            return snprintf(buf, bufsz, "%%pc@(%d:w)", value);
        case AddrMode::kD8PCXiAddr:
            return snprintf(buf, bufsz, "%%pc@(%d,%%%c%d:%c)", value, r, xi, s);
        case AddrMode::kImmediate:
            return snprintf(buf, bufsz, "#%d", value);
        }
        assert(false);
        return -1;
    }
};

constexpr AddrModeArg AddrModeArg::Fetch(
        const uint32_t offset, const DataBuffer &code, const int m, const int xn, const char s)
{
    assert(s == 'b' || s == 'w' || s == 'l');
    switch (m) {
    case 0: // Dn
        return AddrModeArg::Dn(m, xn);
    case 1: // An
        return AddrModeArg::An(m, xn);
    case 2: // (An)
        return AddrModeArg::AnAddr(m, xn);
    case 3: // (An)+
        return AddrModeArg::AnAddrIncr(m, xn);
    case 4: // -(An)
        return AddrModeArg::AnAddrDecr(m, xn);
    case 5: // (d16, An), Additional Word
        if (offset < code.occupied_size) {
            const int16_t d16 = GetI16BE(code.buffer + offset);
            return AddrModeArg::D16AnAddr(m, xn, d16);
        }
        break;
    case 6: // (d8, An, Xi), Brief Extension Word
        if (offset < code.occupied_size) {
            const uint16_t briefext = GetU16BE(code.buffer + offset);
            if (briefext & 0x0700) {
                // briefext must have zeros on 8, 9 an 10-th bits,
                // i.e. xxxx_x000_xxxx_xxxx
                break;
            }
            const char r = ((briefext >> 15) & 1) ? 'a' : 'd';
            const uint8_t xi = (briefext >> 12) & 7;
            const char s = ((briefext >> 11) & 1) ? 'l' : 'w';
            const int8_t d8 = briefext & 0xff;
            return AddrModeArg::D8AnXiAddr(m, xn, r, xi, s, d8);
        }
        break;
    case 7:
        switch (xn) {
        case 0: // (xxx).W, Additional Word
            if (offset < code.occupied_size) {
                const int32_t w = GetI16BE(code.buffer + offset);
                return AddrModeArg::Word(m, xn, w);
            }
            break;
        case 1: // (xxx).L, Additional Long
            if (offset + kInstructionSizeStepBytes < code.occupied_size) {
                const int32_t l = GetI32BE(code.buffer + offset);
                return AddrModeArg::Long(m, xn, l);
            }
            break;
        case 2: // (d16, PC), Additional Word
            if (offset < code.occupied_size) {
                const int16_t d16 = GetI16BE(code.buffer + offset);
                return AddrModeArg::D16PCAddr(m, xn, d16);
            }
            break;
        case 3: // (d8, PC, Xi), Brief Extension Word
            if (offset < code.occupied_size) {
                const uint16_t briefext = GetU16BE(code.buffer + offset);
                if (briefext & 0x0700) {
                    // briefext must have zeros on 8, 9 an 10-th bits,
                    // i.e. xxxx_x000_xxxx_xxxx
                    break;
                }
                const char r = ((briefext >> 15) & 1) ? 'a' : 'd';
                const uint8_t xi = (briefext >> 12) & 7;
                const char s = ((briefext >> 11) & 1) ? 'l' : 'w';
                const int8_t d8 = briefext & 0xff;
                return AddrModeArg::D8PCXiAddr(m, xn, r, xi, s, d8);
            }
            break;
        case 4: // #imm
            if (s == 'l') {
                if (offset + kInstructionSizeStepBytes < code.occupied_size) {
                    const int32_t value = GetI32BE(code.buffer + offset);
                    return AddrModeArg::Immediate(m, xn, s, value);
                }
            } else if (offset < code.occupied_size) {
                const int16_t value = GetI16BE(code.buffer + offset);
                if (s == 'b') {
                    if (value > 255 || value < -255) {
                        // Invalid immediate value for instruction with .b
                        // suffix
                        break;
                    }
                }
                return AddrModeArg::Immediate(m, xn, s, value);
            }
        case 5: // Does not exist
        case 6: // Does not exist
        case 7: // Does not exist
            break;
        }
        break;
    }
    return AddrModeArg{};
}

static char suffix_from_opsize(OpSize opsize)
{
    switch (opsize) {
    case OpSize::kByte: return 'b';
    case OpSize::kWord: return 'w';
    case OpSize::kLong: return 'l';
    case OpSize::kInvalid: return 'l';
    }
    return 'l';
}

static inline size_t snprint_reg_mask(
        char *const buf, const size_t bufsz, const uint32_t regmask_arg, const bool predecrement)
{
    const uint32_t regmask = regmask_arg & 0xffff;
    size_t written = 0;
    bool first_printed = 0;
    size_t span = 0;
    // 17-th bit used to close the span with 0 value unconditionaly
    for (int i = 0; i < 17; i++) {
        const uint32_t mask = 1 << (predecrement ? (15 - i) : i);
        const bool hit = regmask & mask;
        const bool span_open = hit && span == 0;
        const bool span_closed = !hit && span > 1;
        const int printable_i = i - (span_closed ? 1 : 0);
        const int id = printable_i % 8;
        const char regtype = (printable_i >= 8) ? 'a' : 'd';
        if (span_open || span_closed) {
            const char *const delimiter = span_open ? (first_printed ? "/" : "") : "-";
            const size_t remaining = bufsz - written;
            const int ret = snprintf(buf + written, remaining, "%s%%%c%d", delimiter, regtype, id);
            assert(ret > 0);
            assert(static_cast<unsigned>(ret) >= strlen("%d0"));
            assert(static_cast<unsigned>(ret) <= strlen("-%d0"));
            written += Min(remaining, ret);
            first_printed = true;
        }
        span = hit ? span + 1 : 0;
    }
    assert(written < bufsz); // Output must not be truncated
    return written;
}

static void disasm_verbatim(
        DisasmNode &node, uint16_t instr, const DataBuffer &, const Settings &)
{
    node.size = kInstructionSizeStepBytes;
    snprintf(node.mnemonic, kMnemonicBufferSize, ".short");
    snprintf(node.arguments, kArgsBufferSize, "0x%04x", instr);
}

static void disasm_jsr_jmp(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s, JType jsrjmp)
{
    const auto a = AddrModeArg::Fetch(node.offset + kInstructionSizeStepBytes, code, instr, 'w');
    switch (a.mode) {
    case AddrMode::kInvalid:
    case AddrMode::kDn: // 4e80..4e87 / 4ec0..4ec7
    case AddrMode::kAn: // 4e88..4e8f / 4ec8..4ecf
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kAnAddr: // 4e90..4e97 / 4ed0..4ed7
        // NOTE: dynamic jump, branch_addr may possibly be obtained during the
        // trace
        break;
    case AddrMode::kAnAddrIncr: // 4e98..4e9f / 4ed8..4edf
    case AddrMode::kAnAddrDecr: // 4ea0..4ea7 / 4ee0..4ee7
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kD16AnAddr: // 4ea8..4eaf / 4ee8..4eef
        // NOTE: dynamic jump, branch_addr may possibly be obtained during the
        // trace
        break;
    case AddrMode::kD8AnXiAddr: // 4eb0..4eb7 / 4ef0..4ef7
        // NOTE: dynamic jump, branch_addr may possibly be obtained during the
        // trace
        break;
    case AddrMode::kWord: // 4eb8 / 4ef8
        {
            // FIXME support s.abs_marks option for this instruction
            const uint32_t branch_addr = static_cast<uint32_t>(a.value);
            node.branch_addr = branch_addr;
            node.has_branch_addr = true;
        }
        break;
    case AddrMode::kLong: // 4eb9 / 4ef9
        {
            // FIXME support s.abs_marks option for this instruction
            const uint32_t branch_addr = static_cast<uint32_t>(a.value);
            node.branch_addr = branch_addr;
            node.has_branch_addr = true;
        }
        break;
    case AddrMode::kD16PCAddr: // 4eba / 4efa
        {
            // FIXME support s.abs_marks option for this instruction
            const uint32_t branch_addr = static_cast<uint32_t>(a.value) + kInstructionSizeStepBytes;
            node.branch_addr = branch_addr;
            node.has_branch_addr = true;
        }
        break;
    case AddrMode::kD8PCXiAddr: // 4ebb / 4efb
        // NOTE: dynamic jump, branch_addr may possibly be obtained during the
        // trace
        break;
    case AddrMode::kImmediate: // 4ebc / 4efc
        return disasm_verbatim(node, instr, code, s);
    }
    node.is_call = (jsrjmp == JType::kJsr);
    node.size = kInstructionSizeStepBytes + a.Size();
    const char *mnemonic = (jsrjmp == JType::kJsr) ? "jsr" : "jmp";
    snprintf(node.mnemonic, kMnemonicBufferSize, "%s", mnemonic);
    const int ret = a.SNPrint(node.arguments, kArgsBufferSize);
    assert(ret > 0);
    (void) ret;
}

static void disasm_movem(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    if (node.offset + kInstructionSizeStepBytes >= code.occupied_size) {
        // Not enough space for regmask
        return disasm_verbatim(node, instr, code, s);
    }
    const unsigned regmask = GetU16BE(code.buffer + node.offset + kInstructionSizeStepBytes);
    if (regmask == 0) {
        // This is just not representable: at least one register must be specified
        return disasm_verbatim(node, instr, code, s);
    }
    const auto dir = static_cast<MoveDirection>((instr >> 10) & 1);
    const auto opsize = static_cast<OpSize>(((instr >> 6) & 1) + 1);
    const char suffix = suffix_from_opsize(opsize);
    const auto a = AddrModeArg::Fetch(
            node.offset + kInstructionSizeStepBytes * 2, code, instr, suffix);
    switch (a.mode) {
    case AddrMode::kInvalid:
    case AddrMode::kDn: // 4880..4887 / 4c80..4c87 / 48c0..48c7 / 4cc0..4cc7
    case AddrMode::kAn: // 4888..488f / 4c88..4c8f / 48c8..48cf / 4cc8..4ccf
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kAnAddr: // 4890..4897 / 4c90..4c97 / 48d0..48d7 / 4cd0..4cd7
        break;
    case AddrMode::kAnAddrIncr: // 4898..489f / 4c89..4c9f / 48d8..48df / 4cd8..4cdf
        if (dir == MoveDirection::kRegisterToMemory) {
            return disasm_verbatim(node, instr, code, s);
        }
        break;
    case AddrMode::kAnAddrDecr: // 48a0..48a7 / 4ca0..4ca7 / 48e0..48e7 / 4ce0..4ce7
        if (dir == MoveDirection::kMemoryToRegister) {
            return disasm_verbatim(node, instr, code, s);
        }
        break;
    case AddrMode::kD16AnAddr: // 48a8..48af / 4c8a..4caf / 48e8..48ef / 4ce8..4cef
    case AddrMode::kD8AnXiAddr: // 48b0..48b7 / 4cb0..4cb7 / 48f0..48f7 / 4cf0..4cf7
    case AddrMode::kWord: // 48b8 / 4cb8 / 48f8 / 4cf8
    case AddrMode::kLong: // 48b9 / 4cb9 / 48f9 / 4cf9
        break;
    case AddrMode::kD16PCAddr: // 48ba / 4cba / 48fa / 4cfa
    case AddrMode::kD8PCXiAddr: // 48bb / 4cbb / 48fb / 4cfb
        if (dir == MoveDirection::kRegisterToMemory) {
            return disasm_verbatim(node, instr, code, s);
        }
        break;
    case AddrMode::kImmediate: // 4ebc / 4efc
        return disasm_verbatim(node, instr, code, s);
    }
    node.size = kInstructionSizeStepBytes * 2 + a.Size();
    snprintf(node.mnemonic, kMnemonicBufferSize, "movem%c", suffix);
    char regmask_str[48]{};
    char addrmodearg_str[32]{};
    snprint_reg_mask(regmask_str, sizeof(regmask_str), regmask, a.mode == AddrMode::kAnAddrDecr);
    a.SNPrint(addrmodearg_str, sizeof(addrmodearg_str));
    if (dir == MoveDirection::kMemoryToRegister) {
        snprintf(node.arguments, kArgsBufferSize, "%s,%s", addrmodearg_str, regmask_str);
    } else {
        snprintf(node.arguments, kArgsBufferSize, "%s,%s", regmask_str, addrmodearg_str);
    }
}

static void disasm_lea(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
        return disasm_verbatim(node, instr, code, s);
}

static void disasm_chk(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
        return disasm_verbatim(node, instr, code, s);
}

enum class Condition {
    kT = 0,
    kF = 1,
    kHI = 2,
    kLS = 3,
    kCC = 4,
    kCS = 5,
    kNE = 6,
    kEQ = 7,
    kVC = 8,
    kVS = 9,
    kPL = 10,
    kMI = 11,
    kGE = 12,
    kLT = 13,
    kGT = 14,
    kLE = 15,
};

static inline const char *bcc_mnemonic_by_condition(Condition condition)
{
    switch (condition) {
    case Condition::kT:  return "bra"; // 60xx
    case Condition::kF:  return "bsr"; // 61xx
    case Condition::kHI: return "bhi"; // 62xx
    case Condition::kLS: return "bls"; // 63xx
    case Condition::kCC: return "bcc"; // 64xx
    case Condition::kCS: return "bcs"; // 65xx
    case Condition::kNE: return "bne"; // 66xx
    case Condition::kEQ: return "beq"; // 67xx
    case Condition::kVC: return "bvc"; // 68xx
    case Condition::kVS: return "bvs"; // 69xx
    case Condition::kPL: return "bpl"; // 6axx
    case Condition::kMI: return "bmi"; // 6bxx
    case Condition::kGE: return "bge"; // 6cxx
    case Condition::kLT: return "blt"; // 6dxx
    case Condition::kGT: return "bgt"; // 6exx
    case Condition::kLE: return "ble"; // 6fxx
    }
    assert(false);
    return "?";
}

static void disasm_bra_bsr_bcc(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    Condition condition = static_cast<Condition>((instr >> 8) & 0xf);
    const char *mnemonic = bcc_mnemonic_by_condition(condition);
    // False condition Indicates BSR
    int dispmt = static_cast<int8_t>(instr & 0xff);
    if (dispmt % kInstructionSizeStepBytes) {
        return disasm_verbatim(node, instr, code, s);
    }
    const char suffix = dispmt ? 's' : 'w';
    if (dispmt == 0) {
        // Check the boundaries
        if (node.offset + kInstructionSizeStepBytes >= code.occupied_size) {
            return disasm_verbatim(node, instr, code, s);
        }
        dispmt = GetI16BE(code.buffer + node.offset + kInstructionSizeStepBytes);
        if (dispmt % kInstructionSizeStepBytes) {
            return disasm_verbatim(node, instr, code, s);
        }
        node.size = kInstructionSizeStepBytes * 2;
    } else {
        node.size = kInstructionSizeStepBytes;
    }
    node.is_call = (condition == Condition::kF);
    dispmt += kInstructionSizeStepBytes;
    const uint32_t branch_addr = static_cast<uint32_t>(node.offset + dispmt);
    node.branch_addr = branch_addr;
    node.has_branch_addr = true;
    snprintf(node.mnemonic, kMnemonicBufferSize, "%s%c", mnemonic, suffix);
    const char * const sign = dispmt >= 0 ? "+" : "";
    // FIXME support s.rel_marks option for this instruction
    snprintf(node.arguments, kArgsBufferSize, ".%s%d", sign, dispmt);
    return;
}

static inline const char *mnemonic_for_bitops(unsigned opcode)
{
    switch (opcode) {
    case 0: return "btst";
    case 1: return "bchg";
    case 2: return "bclr";
    case 3: return "bset";
    }
    assert(false);
    return "?";
}

static inline void disasm_movep(
        DisasmNode &node, const uint16_t instr, const DataBuffer &code, const Settings &s)
{
    return disasm_verbatim(node, instr, code, s);
}

static void disasm_src_arg_bitops_movep(
        DisasmNode &node,
        const uint16_t instr,
        const DataBuffer &code,
        const Settings &s,
        const bool has_dn_src = true)
{
    const unsigned m = (instr >> 3) & 7;
    if ((m == 1) && has_dn_src) {
        return disasm_movep(node, instr, code, s);
    }
    const unsigned dn = ((instr >> 9) & 7);
    const unsigned xn = instr & 7;
    // Fetch AddrMode::kDn if has_dn_src, otherwise fetch AddrMode::kImmediate
    // byte
    const auto src = AddrModeArg::Fetch(
            node.offset + kInstructionSizeStepBytes,
            code,
            (has_dn_src) ? 0 : 7,
            dn,
            'b');
    if (src.mode == AddrMode::kInvalid) {
        return disasm_verbatim(node, instr, code, s);
    }
    if (has_dn_src) {
        assert(src.mode == AddrMode::kDn);
    } else {
        assert(dn == 4);
        assert(src.mode == AddrMode::kImmediate);
    }
    const auto dst = AddrModeArg::Fetch(
            node.offset + kInstructionSizeStepBytes + src.Size(), code, m, xn, 'w');
    const unsigned opcode = (instr >> 6) & 3;
    switch (dst.mode) {
    case AddrMode::kInvalid:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kDn:
        break;
    case AddrMode::kAn:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kAnAddr:
    case AddrMode::kAnAddrIncr:
    case AddrMode::kAnAddrDecr:
    case AddrMode::kD16AnAddr:
    case AddrMode::kD8AnXiAddr:
    case AddrMode::kWord:
    case AddrMode::kLong:
        break;
    case AddrMode::kD16PCAddr:
    case AddrMode::kD8PCXiAddr:
        if (opcode != 0) {
            // PC relative destination address argument available for BTST only
            return disasm_verbatim(node, instr, code, s);
        }
        break;
    case AddrMode::kImmediate:
        return disasm_verbatim(node, instr, code, s);
    }
    char src_str[32]{};
    char dst_str[32]{};
    src.SNPrint(src_str, sizeof(src_str));
    dst.SNPrint(dst_str, sizeof(dst_str));
    const char suffix = dst.mode == AddrMode::kDn ? 'l' : 'b';
    const char *mnemonic = mnemonic_for_bitops(opcode);
    snprintf(node.mnemonic, kMnemonicBufferSize, "%s%c", mnemonic, suffix);
    snprintf(node.arguments, kArgsBufferSize, "%s,%s", src_str, dst_str);
    node.size = kInstructionSizeStepBytes + src.Size() + dst.Size();
}

static void disasm_bitops(DisasmNode &n, const uint16_t i, const DataBuffer &c, const Settings &s)
{
    return disasm_src_arg_bitops_movep(n, i, c, s, false);
}

static inline void disasm_logical_imm_to(
        DisasmNode &node, const char* mnemonic, const char suffix, const int16_t imm)
{
    const char *reg = suffix == 'b' ? "ccr" : "sr";
    snprintf(node.mnemonic, kMnemonicBufferSize, "%s%c", mnemonic, suffix);
    snprintf(node.arguments, kArgsBufferSize, "#%d,%%%s", imm, reg);
    node.size = kInstructionSizeStepBytes * 2;
}

static inline const char *mnemonic_for_chunk_mf000_v1000(const unsigned opcode)
{
    switch (opcode) {
    case 0: return "ori";
    case 1: return "andi";
    case 2: return "subi";
    case 3: return "addi";
    case 4: break;
    case 5: return "eori";
    case 6: return "cmpi";
    case 7: break;
    }
    assert(false);
    return "?";
}

static void chunk_mf000_v0000(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    const bool has_source_reg = (instr >> 8) & 1;
    if (has_source_reg) {
        return disasm_src_arg_bitops_movep(node, instr, code, s);
    }
    const unsigned opcode = (instr >> 9) & 7;
    if (opcode == 7) {
        // Does not exist
        return disasm_verbatim(node, instr, code, s);
    }
    if (opcode == 4) {
        return disasm_bitops(node, instr, code, s);
    }
    const int m = (instr >> 3) & 7;
    const int xn = instr & 7;
    const auto opsize = static_cast<OpSize>((instr >> 6) & 3);
    if (opsize == OpSize::kInvalid) {
            // Does not exist
            return disasm_verbatim(node, instr, code, s);
    }
    // Anticipating #imm which means "to CCR"/"to SR", depending on OpSize
    if (m == 7 && xn == 4) {
        if (opcode == 2 || opcode == 3 || opcode == 6) {
            // CMPI, SUBI and ANDI neither have immediate destination arguments
            // nor "to CCR"/"to SR" variations
            return disasm_verbatim(node, instr, code, s);
        }
        if (opsize == OpSize::kLong) {
            // Does not exist
            return disasm_verbatim(node, instr, code, s);
        }
    }
    const char suffix = suffix_from_opsize(opsize);
    const auto src = AddrModeArg::Fetch(
            node.offset + kInstructionSizeStepBytes, code, 7, 4, suffix);
    if (src.mode == AddrMode::kInvalid) {
        return disasm_verbatim(node, instr, code, s);
    }
    assert(src.mode == AddrMode::kImmediate);
    const char *mnemonic = mnemonic_for_chunk_mf000_v1000(opcode);
    if (m == 7 && xn == 4) {
        return disasm_logical_imm_to(node, mnemonic, suffix, src.value);
    }
    const auto dst = AddrModeArg::Fetch(
            node.offset + kInstructionSizeStepBytes + src.Size(), code, m, xn, suffix);
    switch (dst.mode) {
    case AddrMode::kInvalid:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kDn:
        break;
    case AddrMode::kAn:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kAnAddr:
    case AddrMode::kAnAddrIncr:
    case AddrMode::kAnAddrDecr:
    case AddrMode::kD16AnAddr:
    case AddrMode::kD8AnXiAddr:
    case AddrMode::kWord:
    case AddrMode::kLong:
        break;
    case AddrMode::kD16PCAddr:
    case AddrMode::kD8PCXiAddr:
        if (opcode != 6) {
            // PC relative destination address argument available for CMPI only
            return disasm_verbatim(node, instr, code, s);
        }
        break;
    case AddrMode::kImmediate:
        return disasm_verbatim(node, instr, code, s);
    }
    char dst_str[32]{};
    dst.SNPrint(dst_str, sizeof(dst_str));
    snprintf(node.mnemonic, kMnemonicBufferSize, "%s%c", mnemonic, suffix);
    snprintf(node.arguments, kArgsBufferSize, "#%d,%s", src.value, dst_str);
    node.size = kInstructionSizeStepBytes + src.Size() + dst.Size();
}

static void disasm_move_movea(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    const int size_spec = (instr >> 12) & 3;
    const char suffix = size_spec == 1 ? 'b' : (size_spec == 3 ? 'w' : 'l');
    const auto src = AddrModeArg::Fetch(
            node.offset + kInstructionSizeStepBytes, code, instr, suffix);
    if (src.mode == AddrMode::kInvalid) {
        return disasm_verbatim(node, instr, code, s);
    }
    if (suffix == 'b' && src.mode == AddrMode::kAn) {
        // Does not exist
        return disasm_verbatim(node, instr, code, s);
    }
    const int m = (instr >> 6) & 7;
    const int xn = (instr >> 9) & 7;
    const auto dst = AddrModeArg::Fetch(
            node.offset + kInstructionSizeStepBytes + src.Size(), code, m, xn, suffix);
    switch (dst.mode) {
    case AddrMode::kInvalid:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kDn:
        break;
    case AddrMode::kAn:
        if (suffix == 'b') {
            // Does not exist
            return disasm_verbatim(node, instr, code, s);
        }
    case AddrMode::kAnAddr:
    case AddrMode::kAnAddrIncr:
    case AddrMode::kAnAddrDecr:
    case AddrMode::kD16AnAddr:
    case AddrMode::kD8AnXiAddr:
    case AddrMode::kWord:
    case AddrMode::kLong:
        break;
    case AddrMode::kD16PCAddr:
    case AddrMode::kD8PCXiAddr:
    case AddrMode::kImmediate:
        return disasm_verbatim(node, instr, code, s);
    }
    char src_str[32]{};
    char dst_str[32]{};
    src.SNPrint(src_str, sizeof(src_str));
    dst.SNPrint(dst_str, sizeof(dst_str));
    const char *mnemonic = dst.mode == AddrMode::kAn ? "movea" : "move";
    snprintf(node.mnemonic, kMnemonicBufferSize, "%s%c", mnemonic, suffix);
    snprintf(node.arguments, kArgsBufferSize, "%s,%s", src_str, dst_str);
    node.size = kInstructionSizeStepBytes + src.Size() + dst.Size();
}

static void disasm_move_from_sr(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    const char suffix = 'w';
    const auto dst = AddrModeArg::Fetch(
            node.offset + kInstructionSizeStepBytes, code, instr, suffix);
    switch (dst.mode) {
    case AddrMode::kInvalid:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kDn:
        break;
    case AddrMode::kAn:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kAnAddr:
    case AddrMode::kAnAddrIncr:
    case AddrMode::kAnAddrDecr:
    case AddrMode::kD16AnAddr:
    case AddrMode::kD8AnXiAddr:
    case AddrMode::kWord:
    case AddrMode::kLong:
        break;
    case AddrMode::kD16PCAddr:
    case AddrMode::kD8PCXiAddr:
    case AddrMode::kImmediate:
        return disasm_verbatim(node, instr, code, s);
    }
    char dst_str[32]{};
    dst.SNPrint(dst_str, sizeof(dst_str));
    snprintf(node.mnemonic, kMnemonicBufferSize, "move%c", suffix);
    snprintf(node.arguments, kArgsBufferSize, "%%sr,%s", dst_str);
    node.size = kInstructionSizeStepBytes + dst.Size();
}

static void disasm_move_to(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s, const char* reg)
{
    const char suffix = 'w';
    const auto src = AddrModeArg::Fetch(
            node.offset + kInstructionSizeStepBytes, code, instr, suffix);
    switch (src.mode) {
    case AddrMode::kInvalid:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kDn:
        break;
    case AddrMode::kAn:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kAnAddr:
    case AddrMode::kAnAddrIncr:
    case AddrMode::kAnAddrDecr:
    case AddrMode::kD16AnAddr:
    case AddrMode::kD8AnXiAddr:
    case AddrMode::kWord:
    case AddrMode::kLong:
    case AddrMode::kD16PCAddr:
    case AddrMode::kD8PCXiAddr:
    case AddrMode::kImmediate:
        break;
    }
    char src_str[32]{};
    src.SNPrint(src_str, sizeof(src_str));
    snprintf(node.mnemonic, kMnemonicBufferSize, "move%c", suffix);
    snprintf(node.arguments, kArgsBufferSize, "%s,%%%s", src_str, reg);
    node.size = kInstructionSizeStepBytes + src.Size();
}

static inline const char *mnemonic_for_chunk_mf800_v4000(const unsigned opcode)
{
    switch (opcode) {
    case 0: return "negx";
    case 1: return "clr";
    case 2: return "neg";
    case 3: return "not";
    }
    assert(false);
    return "?";
}

static void chunk_mf900_v4000(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    const auto opsize = static_cast<OpSize>((instr >> 6) & 3);
    const unsigned opcode = (instr >> 9) & 3;
    if (opsize == OpSize::kInvalid) {
        switch (opcode) {
        case 0:
            return disasm_move_from_sr(node, instr, code, s);
        case 1:
            return disasm_verbatim(node, instr, code, s);
        case 2:
            return disasm_move_to(node, instr, code, s, "ccr");
        case 3:
            return disasm_move_to(node, instr, code, s, "sr");
        }
        assert(false);
        return disasm_verbatim(node, instr, code, s);
    }
    const char *mnemonic = mnemonic_for_chunk_mf800_v4000(opcode);
    const char suffix = suffix_from_opsize(opsize);
    const auto a = AddrModeArg::Fetch(
            node.offset + kInstructionSizeStepBytes, code, instr, suffix);
    switch (a.mode) {
    case AddrMode::kInvalid:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kDn:
        break;
    case AddrMode::kAn:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kAnAddr:
    case AddrMode::kAnAddrIncr:
    case AddrMode::kAnAddrDecr:
    case AddrMode::kD16AnAddr:
    case AddrMode::kD8AnXiAddr:
    case AddrMode::kWord:
    case AddrMode::kLong:
        break;
    case AddrMode::kD16PCAddr:
    case AddrMode::kD8PCXiAddr:
    case AddrMode::kImmediate:
        return disasm_verbatim(node, instr, code, s);
    }
    char a_str[32]{};
    a.SNPrint(a_str, sizeof(a_str));
    snprintf(node.mnemonic, kMnemonicBufferSize, "%s%c", mnemonic, suffix);
    snprintf(node.arguments, kArgsBufferSize, "%s", a_str);
    node.size = kInstructionSizeStepBytes + a.Size();
}

static inline void disasm_trivial(
        DisasmNode &node, uint16_t, const DataBuffer &, const Settings &, const char* mnemonic)
{
    node.size = kInstructionSizeStepBytes;
    snprintf(node.mnemonic, kMnemonicBufferSize, mnemonic);
}

static inline void disasm_tas(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    const auto a = AddrModeArg::Fetch(node.offset + kInstructionSizeStepBytes, code, instr, 'w');
    switch (a.mode) {
    case AddrMode::kInvalid:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kDn:
        break;
    case AddrMode::kAn:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kAnAddr:
    case AddrMode::kAnAddrIncr:
    case AddrMode::kAnAddrDecr:
    case AddrMode::kD16AnAddr:
    case AddrMode::kD8AnXiAddr:
    case AddrMode::kWord:
    case AddrMode::kLong:
        break;
    case AddrMode::kD16PCAddr:
    case AddrMode::kD8PCXiAddr:
    case AddrMode::kImmediate:
        return disasm_verbatim(node, instr, code, s);
    }
    char a_str[32]{};
    a.SNPrint(a_str, sizeof(a_str));
    snprintf(node.mnemonic, kMnemonicBufferSize, "tas");
    snprintf(node.arguments, kArgsBufferSize, "%s", a_str);
    node.size = kInstructionSizeStepBytes + a.Size();
}

static void disasm_tst_tas_illegal(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    const auto opsize = static_cast<OpSize>((instr >> 6) & 3);
    const int m = (instr >> 3) & 7;
    const int xn = instr & 7;
    if (opsize == OpSize::kInvalid) {
        if (m == 7 && xn == 4){
            return disasm_trivial(node, instr, code, s, "illegal");
        }
        return disasm_tas(node, instr, code, s);
    }
    const char suffix = suffix_from_opsize(opsize);
    const auto a = AddrModeArg::Fetch(node.offset + kInstructionSizeStepBytes, code, m, xn, suffix);
    switch (a.mode) {
    case AddrMode::kInvalid:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kDn:
        break;
    case AddrMode::kAn:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kAnAddr:
    case AddrMode::kAnAddrIncr:
    case AddrMode::kAnAddrDecr:
    case AddrMode::kD16AnAddr:
    case AddrMode::kD8AnXiAddr:
    case AddrMode::kWord:
    case AddrMode::kLong:
    case AddrMode::kD16PCAddr:
    case AddrMode::kD8PCXiAddr:
        break;
    case AddrMode::kImmediate:
        return disasm_verbatim(node, instr, code, s);
    }
    char a_str[32]{};
    a.SNPrint(a_str, sizeof(a_str));
    snprintf(node.mnemonic, kMnemonicBufferSize, "tst%c", suffix);
    snprintf(node.arguments, kArgsBufferSize, "%s", a_str);
    node.size = kInstructionSizeStepBytes + a.Size();
}

static void disasm_trap(
        DisasmNode &node, uint16_t instr, const DataBuffer &, const Settings &)
{
    const unsigned vector = instr & 0xf;
    snprintf(node.mnemonic, kMnemonicBufferSize, "trap");
    snprintf(node.arguments, kArgsBufferSize, "#%u", vector);
    node.size = kInstructionSizeStepBytes;
}

static void disasm_link_unlink(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    const bool unlk = (instr >> 3) & 1;
    const unsigned xn = instr & 7;
    if (unlk) {
        snprintf(node.mnemonic, kMnemonicBufferSize, "unlk");
        snprintf(node.arguments, kArgsBufferSize, "%%a%u", xn);
        node.size = kInstructionSizeStepBytes;
        return;
    }
    // Fetch immediate word
    const auto src = AddrModeArg::Fetch(node.offset + kInstructionSizeStepBytes, code, 7, 4, 'w');
    switch (src.mode) {
    case AddrMode::kInvalid:
    case AddrMode::kDn:
    case AddrMode::kAn:
    case AddrMode::kAnAddr:
    case AddrMode::kAnAddrIncr:
    case AddrMode::kAnAddrDecr:
    case AddrMode::kD16AnAddr:
    case AddrMode::kD8AnXiAddr:
    case AddrMode::kWord:
    case AddrMode::kLong:
    case AddrMode::kD16PCAddr:
    case AddrMode::kD8PCXiAddr:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kImmediate:
        break;
    }
    char src_str[32]{};
    src.SNPrint(src_str, sizeof(src_str));
    snprintf(node.mnemonic, kMnemonicBufferSize, "linkw");
    snprintf(node.arguments, kArgsBufferSize, "%%a%u,%s", xn, src_str);
    node.size = kInstructionSizeStepBytes + src.Size();
}

static void disasm_move_usp(
        DisasmNode &node, uint16_t instr, const DataBuffer &, const Settings &)
{
    const unsigned xn = instr & 7;
    const auto dir = static_cast<MoveDirection>((instr >> 3) & 1);
    node.size = kInstructionSizeStepBytes;
    snprintf(node.mnemonic, kMnemonicBufferSize, "movel");
    if (dir == MoveDirection::kRegisterToMemory) {
        snprintf(node.arguments, kArgsBufferSize, "%%a%u,%%usp", xn);
    } else {
        snprintf(node.arguments, kArgsBufferSize, "%%usp,%%a%u", xn);
    }
}

static void chunk_mf000_v4000(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    if ((instr & 0xf900) == 0x4000) {
        return chunk_mf900_v4000(node, instr, code, s);
    } else if ((instr & 0xff00) == 0x4a00) {
        return disasm_tst_tas_illegal(node, instr, code, s);
    } else if ((instr & 0xfff0) == 0x4e40) {
        return disasm_trap(node, instr, code, s);
    } else if ((instr & 0xfff0) == 0x4e50) {
        return disasm_link_unlink(node, instr, code, s);
    } else if ((instr & 0xfff0) == 0x4e60) {
        return disasm_move_usp(node, instr, code, s);
    } else if (instr == 0x4e70) {
        return disasm_trivial(node, instr, code, s, "reset");
    } else if (instr == 0x4e71) {
        return disasm_trivial(node, instr, code, s, "nop");
    } else if (instr == 0x4e72) {
        if (node.offset + kInstructionSizeStepBytes < code.occupied_size) {
            node.size = kInstructionSizeStepBytes * 2;
            snprintf(node.mnemonic, kMnemonicBufferSize, "stop");
            const uint16_t sr_imm = GetU16BE(code.buffer + node.offset + kInstructionSizeStepBytes);
            snprintf(node.arguments, kArgsBufferSize, "#0x%x:w", sr_imm);
            return;
        }
    } else if (instr == 0x4e73) {
        return disasm_trivial(node, instr, code, s, "rte");
    } else if (instr == 0x4e75) {
        return disasm_trivial(node, instr, code, s, "rts");
    } else if (instr == 0x4e76) {
        return disasm_trivial(node, instr, code, s, "trapv");
    } else if (instr == 0x4e77) {
        return disasm_trivial(node, instr, code, s, "rtr");
    } else if ((instr & 0xffc0) == 0x4e80) {
        return disasm_jsr_jmp(node, instr, code, s, JType::kJsr);
    } else if ((instr & 0xffc0) == 0x4ec0) {
        return disasm_jsr_jmp(node, instr, code, s, JType::kJmp);
    } else if ((instr & 0xfb80) == 0x4880) {
        return disasm_movem(node, instr, code, s);
    } else if ((instr & 0xf1c) == 0x41c0) {
        return disasm_lea(node, instr, code, s);
    } else if ((instr & 0xf1c) == 0x4180) {
        return disasm_chk(node, instr, code, s);
    }
    return disasm_verbatim(node, instr, code, s);
}

static void disasm_addq_subq(
        DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s, OpSize opsize)
{
    const char suffix = suffix_from_opsize(opsize);
    const auto a = AddrModeArg::Fetch(node.offset + kInstructionSizeStepBytes, code, instr, suffix);
    switch (a.mode) {
    case AddrMode::kInvalid:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kDn: // 5x00..5x07 / 5x40..5x47 / 5x80..5x87
        break;
    case AddrMode::kAn: // 5x08..5x0f / 5x48..5x4f / 5x88..5x8f
        if (opsize == OpSize::kByte) {
            // 5x08..5x0f
            // addqb and subqb with An do not exist
            return disasm_verbatim(node, instr, code, s);
        }
        break;
    case AddrMode::kAnAddr: // 5x10..5x17 / 5x50..5x57 / 5x90..5x97
    case AddrMode::kAnAddrIncr: // 5x18..5x1f / 5x58..5x5f / 5x98..5x9f
    case AddrMode::kAnAddrDecr: // 5x20..5x27 / 5x60..5x67 / 5xa0..5xa7
    case AddrMode::kD16AnAddr: // 5x28..5x2f / 5x68..5x6f / 5xa8..5xaf
    case AddrMode::kD8AnXiAddr: // 5x30..5x37 / 5x70..5x77 / 5xb0..5xb7
    case AddrMode::kWord: // 5x38 / 5x78 / 5xb8
    case AddrMode::kLong: // 5x39 / 5x79 / 5xb9
        break;
    case AddrMode::kD16PCAddr: // 5x3a / 5x7a / 5xba
    case AddrMode::kD8PCXiAddr: // 5x3b / 5x7b / 5xbb
    case AddrMode::kImmediate: // 5x3c / 5x7c / 5xbc
        // Does not exist
        return disasm_verbatim(node, instr, code, s);
    }
    node.size = kInstructionSizeStepBytes + a.Size();
    const char *mnemonic = (instr >> 8) & 1 ? "subq" : "addq";
    snprintf(node.mnemonic, kMnemonicBufferSize, "%s%c", mnemonic, suffix);
    const unsigned imm = ((uint8_t((instr >> 9) & 7) - 1) & 7) + 1;
    const int ret = snprintf(node.arguments, kArgsBufferSize, "#%u,", imm);
    assert(ret > 0);
    assert(static_cast<unsigned>(ret) == strlen("#8,"));
    a.SNPrint(node.arguments + ret, kArgsBufferSize - ret);
}

static inline const char *dbcc_mnemonic_by_condition(Condition condition)
{
    switch (condition) {
    case Condition::kT:  return "dbt";  // 50c8..50cf
    case Condition::kF:  return "dbf";  // 51c8..51cf
    case Condition::kHI: return "dbhi"; // 52c8..52cf
    case Condition::kLS: return "dbls"; // 53c8..53cf
    case Condition::kCC: return "dbcc"; // 54c8..54cf
    case Condition::kCS: return "dbcs"; // 55c8..55cf
    case Condition::kNE: return "dbne"; // 56c8..56cf
    case Condition::kEQ: return "dbeq"; // 57c8..57cf
    case Condition::kVC: return "dbvc"; // 58c8..58cf
    case Condition::kVS: return "dbvs"; // 59c8..59cf
    case Condition::kPL: return "dbpl"; // 5ac8..5acf
    case Condition::kMI: return "dbmi"; // 5bc8..5bcf
    case Condition::kGE: return "dbge"; // 5cc8..5ccf
    case Condition::kLT: return "dblt"; // 5dc8..5dcf
    case Condition::kGT: return "dbgt"; // 5ec8..5ecf
    case Condition::kLE: return "dble"; // 5fc8..5fcf
    }
    assert(false);
    return "?";
}

static void disasm_dbcc(DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    if (node.offset + kInstructionSizeStepBytes >= code.occupied_size) {
        return disasm_verbatim(node, instr, code, s);
    }
    const int16_t dispmt_raw = GetI16BE(code.buffer + node.offset + kInstructionSizeStepBytes);
    if (dispmt_raw % kInstructionSizeStepBytes) {
        return disasm_verbatim(node, instr, code, s);
    }
    node.size = kInstructionSizeStepBytes * 2;
    Condition condition = static_cast<Condition>((instr >> 8) & 0xf);
    const char *mnemonic = dbcc_mnemonic_by_condition(condition);
    const int dn = (instr & 7);
    const uint32_t branch_addr = static_cast<uint32_t>(node.offset + dispmt_raw);
    node.branch_addr = branch_addr;
    node.has_branch_addr = true;
    const int32_t dispmt = dispmt_raw + kInstructionSizeStepBytes;
    snprintf(node.mnemonic, kMnemonicBufferSize, "%s", mnemonic);
    const char * const sign = dispmt >= 0 ? "+" : "";
    // FIXME support s.rel_marks option for this instruction
    snprintf(node.arguments, kArgsBufferSize, "%%d%d,.%s%d", dn, sign, dispmt);
    return;
}

static inline const char *scc_mnemonic_by_condition(Condition condition)
{
    switch (condition) {
    case Condition::kT:  return "st";  // 50cx..50fx
    case Condition::kF:  return "sf";  // 51cx..51fx
    case Condition::kHI: return "shi"; // 52cx..52fx
    case Condition::kLS: return "sls"; // 53cx..53fx
    case Condition::kCC: return "scc"; // 54cx..54fx
    case Condition::kCS: return "scs"; // 55cx..55fx
    case Condition::kNE: return "sne"; // 56cx..56fx
    case Condition::kEQ: return "seq"; // 57cx..57fx
    case Condition::kVC: return "svc"; // 58cx..58fx
    case Condition::kVS: return "svs"; // 59cx..59fx
    case Condition::kPL: return "spl"; // 5acx..5afx
    case Condition::kMI: return "smi"; // 5bcx..5bfx
    case Condition::kGE: return "sge"; // 5ccx..5cfx
    case Condition::kLT: return "slt"; // 5dcx..5dfx
    case Condition::kGT: return "sgt"; // 5ecx..5efx
    case Condition::kLE: return "sle"; // 5fcx..5ffx
    }
    assert(false);
    return "?";
}

static void disasm_scc_dbcc(
        DisasmNode &node, const uint16_t instr, const DataBuffer &code, const Settings &s)
{
    const auto a = AddrModeArg::Fetch(node.offset + kInstructionSizeStepBytes, code, instr, 'w');
    switch (a.mode) {
    case AddrMode::kInvalid:
        return disasm_verbatim(node, instr, code, s);
    case AddrMode::kDn: // 5xc0..5xc7, Dn
        break;
    case AddrMode::kAn: // 5xc8..5xcf, An
        return disasm_dbcc(node, instr, code, s);
    case AddrMode::kAnAddr: // 5xd0..5xd7
    case AddrMode::kAnAddrIncr: // 5xd8..5xdf
    case AddrMode::kAnAddrDecr: // 5xe0..5xe7
    case AddrMode::kD16AnAddr: // 5xe8..5xef
    case AddrMode::kD8AnXiAddr: // 5xf0..5xf7
    case AddrMode::kWord: // 5xf8 (xxx).W
    case AddrMode::kLong: // 5xf9 (xxx).L
        break;
    case AddrMode::kD16PCAddr: // 5xfa
    case AddrMode::kD8PCXiAddr: // 5xfb
    case AddrMode::kImmediate: // 5xfc
        // Does not exist
        return disasm_verbatim(node, instr, code, s);
    }
    node.size = kInstructionSizeStepBytes + a.Size();
    Condition condition = static_cast<Condition>((instr >> 8) & 0xf);
    const char *mnemonic = scc_mnemonic_by_condition(condition);
    snprintf(node.mnemonic, kMnemonicBufferSize, mnemonic);
    a.SNPrint(node.arguments, kArgsBufferSize);
}

static void chunk_mf000_v5000(DisasmNode &n, uint16_t instr, const DataBuffer &c, const Settings &s)
{
    const auto opsize = static_cast<OpSize>((instr >> 6) & 3);
    if (opsize == OpSize::kInvalid) {
        return disasm_scc_dbcc(n, instr, c, s);
    }
    return disasm_addq_subq(n, instr, c, s, opsize);
}

static void disasm_moveq(DisasmNode &node, uint16_t instr, const DataBuffer &code, const Settings &s)
{
    if (instr & 0x100) {
        // Does not exist
        return disasm_verbatim(node, instr, code, s);
    }
    const int m = 0;
    const int xn = (instr >> 9) & 7;
    const auto dst = AddrModeArg::Fetch(node.offset + kInstructionSizeStepBytes, code, m, xn, 'w');
    assert(dst.mode == AddrMode::kDn);
    char dst_str[32]{};
    dst.SNPrint(dst_str, sizeof(dst_str));
    snprintf(node.mnemonic, kMnemonicBufferSize, "moveq");
    const int8_t data = instr & 0xff;
    snprintf(node.arguments, kArgsBufferSize, "#%d,%s", data, dst_str);
    node.size = kInstructionSizeStepBytes + dst.Size();

}

static void chunk_mf000_v8000(DisasmNode &n, uint16_t i, const DataBuffer &c, const Settings &s)
{
    return disasm_verbatim(n, i, c, s);
}

static void chunk_mf000_v9000(DisasmNode &n, uint16_t i, const DataBuffer &c, const Settings &s)
{
    return disasm_verbatim(n, i, c, s);
}

static void chunk_mf000_vb000(DisasmNode &n, uint16_t i, const DataBuffer &c, const Settings &s)
{
    return disasm_verbatim(n, i, c, s);
}

static void chunk_mf000_vc000(DisasmNode &n, uint16_t i, const DataBuffer &c, const Settings &s)
{
    return disasm_verbatim(n, i, c, s);
}

static void chunk_mf000_vd000(DisasmNode &n, uint16_t i, const DataBuffer &c, const Settings &s)
{
    return disasm_verbatim(n, i, c, s);
}

static void chunk_mf000_ve000(DisasmNode &n, uint16_t i, const DataBuffer &c, const Settings &s)
{
    return disasm_verbatim(n, i, c, s);
}

static void m68k_disasm(DisasmNode &n, uint16_t i, const DataBuffer &c, const Settings &s)
{
    switch ((i & 0xf000) >> 12) {
    case 0x0:
        return chunk_mf000_v0000(n, i, c, s);
    case 0x1:
    case 0x2:
    case 0x3:
        return disasm_move_movea(n, i, c, s);
    case 0x4:
        return chunk_mf000_v4000(n, i, c, s);
    case 0x5:
        return chunk_mf000_v5000(n, i, c, s);
    case 0x6:
        return disasm_bra_bsr_bcc(n, i, c, s);
    case 0x7:
        return disasm_moveq(n, i, c, s);
    case 0x8:
        return chunk_mf000_v8000(n, i, c, s);
    case 0x9:
        return chunk_mf000_v9000(n, i, c, s);
    case 0xa:
        // Does not exist
        return disasm_verbatim(n, i, c, s);
    case 0xb:
        return chunk_mf000_vb000(n, i, c, s);
    case 0xc:
        return chunk_mf000_vc000(n, i, c, s);
    case 0xd:
        return chunk_mf000_vd000(n, i, c, s);
    case 0xe:
        return chunk_mf000_ve000(n, i, c, s);
    case 0xf:
        // Does not exist
        return disasm_verbatim(n, i, c, s);
    }
    assert(false);
    return disasm_verbatim(n, i, c, s);
}

void DisasmNode::Disasm(const DataBuffer &code, const Settings &s)
{
    // We assume that no MMU and ROM is always starts with 0
    assert(this->offset < code.occupied_size);
    // It is possible to have multiple DisasmNode::Disasm() calls, and there is
    // no point to disassemble it again if it already has mnemonic determined
    if (this->mnemonic[0] != '\0') {
        return;
    }
    const uint16_t instr = GetU16BE(code.buffer + this->offset);
    m68k_disasm(*this, instr, code, s);
}


void DisasmNode::AddReferencedBy(uint32_t offset, ReferenceType type)
{
    ReferenceNode *node{};
    if (this->last_ref_by) {
        node = this->last_ref_by;
    } else {
        node = new ReferenceNode{};
        assert(node);
        this->ref_by = this->last_ref_by = node;
    }
    node->refs[node->refs_count] = ReferenceRecord{type, offset};
    node->refs_count++;
    if (node->refs_count >= kRefsCountPerBuffer) {
        ReferenceNode *new_node = new ReferenceNode{};
        assert(new_node);
        node->next = new_node;
        this->last_ref_by = new_node;
    }
}

DisasmNode::~DisasmNode()
{
    ReferenceNode *ref{this->ref_by};
    while (ref) {
        ReferenceNode *prev = ref;
        ref = ref->next;
        delete prev;
    }
}