diff options
Diffstat (limited to '3_sprites/main.c')
-rw-r--r-- | 3_sprites/main.c | 606 |
1 files changed, 606 insertions, 0 deletions
diff --git a/3_sprites/main.c b/3_sprites/main.c new file mode 100644 index 0000000..106a8a4 --- /dev/null +++ b/3_sprites/main.c @@ -0,0 +1,606 @@ +// Rewritten from https://github.com/BigEvilCorporation/megadrive_samples/blob/313e16db9c8cdd0bcd0c98223b3d4245f921b31d/3_sprites/sprites.asm + +//============================================================== +// SEGA MEGA DRIVE/GENESIS - DEMO 3 - SPRITES SAMPLE +//============================================================== +// by Big Evil Corporation +//============================================================== + +// A small, discreet, and complete sprites sample, with a healthy +// dose of comments and explanations for beginners. +// Runs on genuine hardware, and (hopefully) all emulators. +// +// I recommend reading and understanding the Scroll Planes +// sample first. +// +// To assemble this program with ASM68K.EXE: +// ASM68K.EXE /p sprites.asm,sprites.bin,sprites.map,sprites.lst +// +// To assemble this program with SNASM68K.EXE: +// SNASM68K.EXE /p sprites.asm,sprites.map,sprites.lst,sprites.bin +// +// sprites.asm = this source file +// sprites.bin = the binary file, fire this up in your emulator! +// sprites.lst = listing file, shows assembled addresses alongside +// your source code, open in a text editor +// sprites.map = symbol map file for linking (unused) + +//============================================================== + +#include <stdint.h> +#include <stddef.h> + +//============================================================== +// CONSTANTS +//============================================================== + +// VDP port addresses +#define VDP_DATA ((volatile uint16_t*)0x00C00000L) +#define VDP_CONTROL ((volatile uint16_t*)0x00C00004L) + +// VDP commands +#define VDP_CMD_VRAM_WRITE ((uint32_t)0x40000000L) +#define VDP_CMD_CRAM_WRITE ((uint32_t)0xC0000000L) +#define VDP_CMD_VSRAM_WRITE ((uint32_t)0x40000010L) + +// VDP memory addresses +// according to VDP registers 0x2, 0x4, and 0xD (see table above) +#define VRAM_ADDR_TILES (0x0000) +#define VRAM_ADDR_PLANE_A (0xC000) +#define VRAM_ADDR_PLANE_B (0xE000) +#define VRAM_ADDR_SPRITE_TABLE (0xF000) // NEW in this demo - the Sprite Attribute Table (SAT) +#define VRAM_ADDR_HSCROLL (0xFC00) + +// Screen width and height (in pixels) +#define VDP_SCREEN_WIDTH (0x0140) +#define VDP_SCREEN_HEIGHT (0x00F0) + +// The plane width and height (in tiles) +// according to VDP register 0x10 (see table above) +#define VDP_PLANE_WIDTH (0x40) +#define VDP_PLANE_HEIGHT (0x20) + +// The size of the sprite plane (512x512 pixels) +// +// With only a 320x240 display size, a lot of this +// is off screen, which is useful for hiding sprites +// when not needed (saves needing to adjust the linked +// list in the attribute table). +#define VDP_SPRITE_PLANE_WIDTH (0x0200) +#define VDP_SPRITE_PLANE_HEIGHT (0x0200) + +// The sprite border (invisible area left + top) size +// +// The sprite plane is 512x512 pixels, but is offset by +// -128 pixels in both X and Y directions. To see a sprite +// on screen at 0,0 we need to offset its position by +// this border. +#define VDP_SPRITE_BORDER_X (0x80) +#define VDP_SPRITE_BORDER_Y (0x80) + +// Hardware version address +#define HARDWARE_VER_ADDRESS ((uint8_t*)0x00A10001L) + +// TMSS +#define TMSS_ADDRESS ((uint32_t*)0x00A14000L) +#define TMSS_SIGNATURE (('S' << 24) | ('E' << 16) | ('G' << 8) | 'A') + +// The size of a word and longword +#define SIZE_WORD (2) +#define SIZE_LONG (4) + +// The size of one palette (in bytes, words, and longwords) +#define SIZE_PALETTE_B (0x20) +#define SIZE_PALETTE_W (SIZE_PALETTE_B/SIZE_WORD) +#define SIZE_PALETTE_L (SIZE_PALETTE_B/SIZE_LONG) + +// The size of one graphics tile (in bytes, words, and longwords) +#define SIZE_TILE_B (0x20) +#define SIZE_TILE_W (SIZE_TILE_B/SIZE_WORD) +#define SIZE_TILE_L (SIZE_TILE_B/SIZE_LONG) + +// Text draw position (in tiles) +#define TEXT_POS_X (0x02) +#define TEXT_POS_Y (0x04) + +// Sprite initial draw positions (in pixels) +#define SPRITE_1_START_POS_X (VDP_SPRITE_BORDER_X) +#define SPRITE_1_START_POS_Y (VDP_SPRITE_BORDER_Y) +#define SPRITE_2_START_POS_X (VDP_SPRITE_BORDER_X + 0x0040) +#define SPRITE_2_START_POS_Y (VDP_SPRITE_BORDER_Y + 0x0020) + +// Speed (in pixels per frame) to move our sprites +#define SPRITE_1_MOVE_SPEED_X (0x1) +#define SPRITE_1_MOVE_SPEED_Y (0x1) +#define SPRITE_2_MOVE_SPEED_X (0x2) +#define SPRITE_2_MOVE_SPEED_Y (0x0) + +//============================================================== +// MEMORY MAP +//============================================================== +// We need to store the current sprite positions in RAM and update +// them each frame. There are a few ways to create a memory map, +// but the cleanest, simplest, and easiest to maintain method +// uses the assembler's "RS" keywords. RSSET begins a new table of +// offsets starting from any other offset (here we're starting at +// 0x00FF0000, the start of RAM), and allows us to add named entries +// of any size for the "variables". We can then read/write these +// variables using the offsets' labels (see INT_VInterrupt for use +// cases). +//============================================================== +#define RAM_SPRITE_1_POS_X ((uint16_t*)0x00FF0000) // 1 table entry of word size for sprite 1's X pos +#define RAM_SPRITE_1_POS_Y ((uint16_t*)0x00FF0002) // 1 table entry of word size for sprite 1's Y pos +#define RAM_SPRITE_2_POS_X ((uint16_t*)0x00FF0004) // 1 table entry of word size for sprite 2's X pos +#define RAM_SPRITE_2_POS_Y ((uint16_t*)0x00FF0006) // 1 table entry of word size for sprite 2's Y pos + +// !! Be careful when adding any table entries of BYTE size, since +// you'll need to start worrying about alignment. More of this in a +// future demo. + +// Number of palettes to write to CRAM +#define PALETTE_COUNT (0x2) + +//============================================================== +// TILE IDs +//============================================================== +// The indices of the first tile in each sprite. We only need +// to tell the sprite table where to find the starting tile of +// each sprite, so we don't bother keeping track of every tile +// index. +// +// Note we still leave the first tile blank (planes A and B are +// filled with tile 0) so we'll be uploading our sprite tiles +// from index 1. +// +// See bottom of the file for the sprite tiles themselves. +//============================================================== +#define TILE_ID_BLANK (0x00) // The blank tile at index 0 +#define TILE_ID_SPRITE_1 (0x01) // Sprite 1 index (4 tiles) +#define TILE_ID_SPRITE_2 (0x05) // Sprite 2 index (12 tiles) + +// Total number of tiles in the sprites to upload to VRAM +#define TILE_COUNT (0x11) // Total tiles = 16 + +//============================================================== +// INITIAL VDP REGISTER VALUES +//============================================================== +// In this demo, we're particularly interested in register 0x5, +// which specifies the address of the Sprite Attribute Table +// (SAT) within VRAM. Here it's set to 0xF000. +//============================================================== +static const uint8_t vdp_registers[] = { + 0x14, // 0x00: H interrupt on, palettes on + 0x74, // 0x01: V interrupt on, display on, DMA on, Genesis mode on + 0x30, // 0x02: Pattern table for Scroll Plane A at VRAM 0xC000 (bits 3-5 = bits 13-15) + 0x00, // 0x03: Pattern table for Window Plane at VRAM 0x0000 (disabled) (bits 1-5 = bits 11-15) + 0x07, // 0x04: Pattern table for Scroll Plane B at VRAM 0xE000 (bits 0-2 = bits 11-15) + 0x78, // 0x05: Sprite Attribute Table at VRAM 0xF000 (bits 0-6 = bits 9-15) + 0x00, // 0x06: Unused + 0x00, // 0x07: Background colour: bits 0-3 = colour, bits 4-5 = palette + 0x00, // 0x08: Unused + 0x00, // 0x09: Unused + 0x08, // 0x0A: Frequency of Horiz. interrupt in Rasters (number of lines travelled by the beam) + 0x00, // 0x0B: External interrupts off, V scroll per-page, H scroll per-page + 0x81, // 0x0C: Shadows and highlights off, interlace off, H40 mode (320 x 224 screen res) + 0x3F, // 0x0D: Horiz. scroll table at VRAM 0xFC00 (bits 0-5) + 0x00, // 0x0E: Unused + 0x02, // 0x0F: Autoincrement 2 bytes + 0x01, // 0x10: Scroll plane size: 64x32 tiles + 0x00, // 0x11: Window Plane X pos 0 left (pos in bits 0-4, left/right in bit 7) + 0x00, // 0x12: Window Plane Y pos 0 up (pos in bits 0-4, up/down in bit 7) + 0xFF, // 0x13: DMA length lo byte + 0xFF, // 0x14: DMA length hi byte + 0x00, // 0x15: DMA source address lo byte + 0x00, // 0x16: DMA source address mid byte + 0x80, // 0x17: DMA source address hi byte, memory-to-VRAM mode (bits 6-7) +}; + +//============================================================== +// PALETTE +//============================================================== +// In this demo we'll be using one palette per sprite, +// so we've added a palette count to upload the correct number +// of entries. +//============================================================== + +static const uint16_t palette[SIZE_PALETTE_W * PALETTE_COUNT] = { + // Palette for sprite 1 + 0x0000, + 0x0020, + 0x0EEE, + 0x00AC, + 0x02EA, + 0x00EE, + 0x0008, + 0x000C, + 0x000A, + 0x0000, + 0x0000, + 0x0000, + 0x0000, + 0x0000, + 0x0000, + 0x0000, + // Palette for sprite 2 + 0x0000, + 0x0004, + 0x0226, + 0x0040, + 0x0446, + 0x0262, + 0x0662, + 0x004A, + 0x0468, + 0x0882, + 0x006C, + 0x0202, + 0x04A0, + 0x0AC2, + 0x06AE, + 0x02EC, +}; + +//============================================================== +// SPRITE TILES +//============================================================== +// The sprite graphics tiles. Too big to paste in here, so we'll +// include them from external files at the bottom of the ROM. +// +// If your tile data is in binary format rather than text, use +// INCBIN instead of INCLUDE. +//============================================================== + +extern const uint32_t sprite_tiles[TILE_COUNT * SIZE_TILE_L]; + +//============================================================== +// VRAM WRITE MACROS +//============================================================== +// Some utility macros to help generate addresses and commands for +// writing data to video memory, since they're tricky (and +// error prone) to calculate manually. +// The resulting command and address is written to the VDP's +// control port, ready to accept data in the data port. +//============================================================== + +// Set the VRAM (video RAM) address to write to next +static inline void SetVRAMWrite(uint16_t addr) +{ + *(volatile uint32_t*)VDP_CONTROL = VDP_CMD_VRAM_WRITE | ((addr & 0x3FFF) << 16) | (addr >> 14); +} + +// Set the CRAM (colour RAM) address to write to next +static inline void SetCRAMWrite(uint16_t addr) +{ + *(volatile uint32_t*)VDP_CONTROL = VDP_CMD_CRAM_WRITE | ((addr & 0x3FFF) << 16) | (addr >> 14); +} + +// Set the VSRAM (vertical scroll RAM) address to write to next +static inline void SetVSRAMWrite(uint16_t addr) +{ + *(volatile uint32_t*)VDP_CONTROL = VDP_CMD_VSRAM_WRITE | ((addr & 0x3FFF) << 16) | (addr >> 14); +} + +//============================================================== +// SPRITE ATTRIBUTE MACRO +//============================================================== +// A macro to help build an entry in the Sprite Attribute +// Table, since manipulating structures and bit twiddling isn't +// the focus of this demo, and would make the code harder to +// read. +//============================================================== +// Proper game implementations would make use of a local SAT +// table in RAM and use DMA to transfer the table to VRAM each +// frame (which also allows us to use RAM like a "stream" to write +// this data more efficiently) but this is the best method for +// teaching the basics first. +//============================================================== +// Each sprite attribute entry is in the following format: +// +// Y coordinate 1 word - the Y coordinate on the sprite plane +// Dimensions bits 1 byte - bits describing the layout (1x1 tiles up to 4x4 tiles) +// Linked list next 1 byte - the index of the next sprite to draw, or 0 if end of list +// Prio/palette/flip 1 byte - the priority (bit 15), palette (bits 14-13), +// v/h flip (bits 12 and 11), and top 3 bits of the tile ID +// Tile ID bottom 1 byte - the bottom 8 bits of the tile ID +// X coordinate 1 word - the X coordinate on the sprite plane +//============================================================== + +// Writes a sprite attribute structure to 4 registers, ready to write to VRAM +static struct SpriteStructure { uint16_t reg1, reg2, reg3, reg4; } BuildSpriteStructure( + uint16_t x_pos, // X pos on sprite plane + uint16_t y_pos, // Y pos on sprite plane + uint16_t dimension_bits, // Sprite tile dimensions (4 bits) + uint16_t next_id, // Next sprite index in linked list + uint16_t priority_bit, // Draw priority + uint16_t palette_id, // Palette index + uint16_t flip_x, // Flip horizontally + uint16_t flip_y, // Flip vertically + uint16_t tile_id) // First tile index +{ + return (struct SpriteStructure){ + .reg1 = y_pos, + .reg2 = (dimension_bits << 8) | next_id, + .reg3 = (priority_bit << 14) | (palette_id << 13) | (flip_x << 11) | (flip_y << 10) | + tile_id, + .reg4 = x_pos, + }; +} + +static void VDP_WriteTMSS(void) +{ + // The TMSS (Trademark Security System) locks up the VDP if we don't + // write the string 'SEGA' to a special address. This was to discourage + // unlicensed developers, since doing this displays the "LICENSED BY SEGA + // ENTERPRISES LTD" message to screen (on Mega Drive models 1 and higher). + // + // First, we need to check if we're running on a model 1+, then write + // 'SEGA' to hardware address 0xA14000. + const uint8_t ver = (*HARDWARE_VER_ADDRESS) & 0x0f; + if (ver != 0) { + *TMSS_ADDRESS = TMSS_SIGNATURE; + } + + // Check VDP + // Read VDP status register (hangs if no access) + *VDP_CONTROL; +} + +static void VDP_LoadRegisters(void) +{ + // To initialise the VDP, we write all of its initial register values from + // the table at the top of the file, using a loop. + // + // To write a register, we write a word to the control port. + // The top bit must be set to 1 (so 0x8000), bits 8-12 specify the register + // number to write to, and the bottom byte is the value to set. + // + // In binary: + // 100X XXXX YYYY YYYY + // X = register number + // Y = value to write + + // Set VDP registers + for (size_t i = 0; i < sizeof(vdp_registers) / sizeof(*vdp_registers); i++) { + const uint16_t cmd = 0x8000; // 'Set register 0' command + const uint16_t reg_num = i << 8; + *VDP_CONTROL = cmd | reg_num | vdp_registers[i]; + } +} + +int main(void) +{ + //============================================================== + // Initialise the Mega Drive + //============================================================== + + // Write the TMSS signature (if a model 1+ Mega Drive) + VDP_WriteTMSS(); + + // Load the initial VDP registers + VDP_LoadRegisters(); + + //============================================================== + // Clear VRAM (video memory) + //============================================================== + + // Setup the VDP to write to VRAM address 0x0000 (start of VRAM) + SetVRAMWrite(0x0000); + + // Write 0's across all of VRAM + const size_t count = (0x00010000 / SIZE_WORD); // Loop counter = 64kb, in words + for (size_t i = 0; i < count; i++) { + *VDP_DATA = 0x0; // Write a 0x0000 (word size) to VRAM + } + + //============================================================== + // Write the palette to CRAM (colour memory) + //============================================================== + + // Setup the VDP to write to CRAM address 0x0000 (first palette) + SetCRAMWrite(0x0000); + + // Write the palettes to CRAM + // + // This time we're writing multiple palettes, so multiply the word count + // by the palette count (and don't forget the -1 for the loop counter). + for (size_t i = 0; i < PALETTE_COUNT * SIZE_PALETTE_W; i++) { + *VDP_DATA = palette[i]; // Write palette entry + } + + //============================================================== + // Write the sprite tiles to VRAM + //============================================================== + + // Setup the VDP to write to VRAM address 0x0020 (the address of the first sprite tile, index 1) + // + // We need to leave the first tile blank (we cleared VRAM, so it should be all 0's) for + // planes A and B to display, so skip the first tile (offset address by size_tile_b). + SetVRAMWrite(VRAM_ADDR_TILES + SIZE_TILE_B); + + // Write the font glyph tiles to VRAM + for (size_t i = 0; i < TILE_COUNT * SIZE_TILE_L; i++) { + // Write tile line (4 bytes per line), and post-increment address + *(volatile uint32_t*)VDP_DATA = sprite_tiles[i]; + } + + //============================================================== + // Set up the Sprite Attribute Table (SAT) + //============================================================== + + // The Sprite Attribute Table is a table of sprites to draw. + // Each entry in the table describes the first tile ID, the number + // of tiles to draw (and their layout), the X and Y position + // (on the 512x512 sprite plane), the palette to draw with, a + // priority flag, and X/Y flipping flags. + // + // Sprites can be layed out in these tile dimensions: + // + // 1x1 (1 tile) - 0000 + // 1x2 (2 tiles) - 0001 + // 1x3 (3 tiles) - 0010 + // 1x4 (4 tiles) - 0011 + // 2x1 (2 tiles) - 0100 + // 2x2 (4 tiles) - 0101 + // 2x3 (6 tiles) - 0110 + // 2x4 (8 tiles) - 0111 + // 3x1 (3 tiles) - 1000 + // 3x2 (6 tiles) - 1001 + // 3x3 (9 tiles) - 1010 + // 3x4 (12 tiles)- 1011 + // 4x1 (4 tiles) - 1100 + // 4x2 (8 tiles) - 1101 + // 4x3 (12 tiles)- 1110 + // 4x4 (16 tiles)- 1111 + // + // The tiles are layed out in COLUMN MAJOR, rather than planes A and B + // which are row major. Tiles within a sprite cannot be reused (since it + // only accepts a starting tile and a count/layout) so the whole sprite + // needs uploading to VRAM in one consecutive chunk, even if some tiles + // are duplicates. + // + // The X/Y flipping flags take the layout into account, you don't need + // to re-adjust the layout, position, or tile IDs to flip the entire + // sprite as a whole. + // + // There are 64 entries in the table, but the number of them drawn, + // and the order in which they're processed, is determined by a linked + // list. Each sprite entry has an index to the NEXT sprite to be drawn. + // If this index is 0, the list ends, and the VDP won't draw any more + // sprites this frame. + + // Start writing to the sprite attribute table in VRAM + SetVRAMWrite(VRAM_ADDR_SPRITE_TABLE); + + //============================================================== + // Set up sprite 1 + + // Write all values into registers first to make it easier. We + // write to VRAM one word at a time (auto-increment is set to 2 + // in VDP register 0xF), so we'll assign each word to a register. + // + // Since bit twiddling and manipulating structures isn't the focus of + // this sample, we have a macro to simplify this part. + + // Position: sprite_1_start_pos_x,sprite_1_start_pos_y + // Dimensions: 2x2 tiles (8 tiles total) = 0101 in binary (see table above) + // Next link: sprite index 1 is next to be processed + // Priority: 0 + // Palette id: 0 + // Flip X: 0 + // Flip Y: 0 + // Tile id: tile_id_sprite_1 + const struct SpriteStructure sprite1 = BuildSpriteStructure( + SPRITE_1_START_POS_X, SPRITE_1_START_POS_Y, 5, 1, 0, 0, 0, 0, TILE_ID_SPRITE_1); + + // Write the entire sprite attribute structure to the sprite table + *VDP_DATA = sprite1.reg1; + *VDP_DATA = sprite1.reg2; + *VDP_DATA = sprite1.reg3; + *VDP_DATA = sprite1.reg4; + + //============================================================== + // Set up sprite 2 + + // Position: sprite_2_start_pos_x,sprite_2_start_pos_y + // Dimensions: 4x3 tiles (16 tiles total) = 1110 in binary (see table above) + // Next link: sprite index 0 (end of linked list) + // Priority: 0 + // Palette id: 1 + // Flip X: 0 + // Flip Y: 0 + // Tile id: tile_id_sprite_2 + const struct SpriteStructure sprite2 = BuildSpriteStructure( + SPRITE_2_START_POS_X, SPRITE_2_START_POS_Y, 0xe, 0, 0, 1, 0, 0, TILE_ID_SPRITE_2); + + // Write the entire sprite attribute structure to the sprite table + *VDP_DATA = sprite2.reg1; + *VDP_DATA = sprite2.reg2; + *VDP_DATA = sprite2.reg3; + *VDP_DATA = sprite2.reg4; + + //============================================================== + // Intitialise variables in RAM + //============================================================== + *RAM_SPRITE_1_POS_X = SPRITE_1_START_POS_X; + *RAM_SPRITE_1_POS_Y = SPRITE_1_START_POS_Y; + *RAM_SPRITE_2_POS_X = SPRITE_2_START_POS_X; + *RAM_SPRITE_2_POS_Y = SPRITE_2_START_POS_Y; + + //============================================================== + // Initialise status register and set interrupt level. + // This begins firing vertical and horizontal interrupts. + // + // Since the vinterrupt does something meaningful in this + // demo, we start this AFTER setting up the VDP to draw and + // intialising the variables in RAM. + //============================================================== + asm inline volatile (" move.w #0x2300, %sr"); + + // Finished! + + //============================================================== + // Loop forever + //============================================================== + // This loops forever, effectively ending our main routine, + // but the VDP will continue to run of its own accord and + // will still fire vertical and horizontal interrupts (which is + // where our update code is), so the demo continues to run. + // + // For a game, it would be better to use this loop for processing + // input and game code, and wait here until next vblank before + // looping again. We only use vinterrupt for updates in this demo + // for simplicity (because we don't yet have any timing code). + while (1); +} + +//============================================================== +// CODE ENTRY POINT +//============================================================== +// The "main()" function. Your code starts here. Once the CPU +// has finished initialising, it will jump to this entry point +// (specified in the vector table at the top of the file). +//============================================================== +__attribute__((interrupt)) void CPU_EntryPoint(void) +{ + main(); +} + +// Vertical interrupt - run once per frame (50hz in PAL, 60hz in NTSC) +__attribute__((interrupt)) void INT_VInterrupt(void) +{ + // Fetch current sprite coordinates from RAM + // + // Animate them (x/y coords are 9 bits, so this + // wraps around the whole 512x512 sprite plane) + // + // Store updated values back in RAM for next frame + *RAM_SPRITE_1_POS_X += SPRITE_1_MOVE_SPEED_X; + *RAM_SPRITE_1_POS_Y += SPRITE_1_MOVE_SPEED_Y; + *RAM_SPRITE_2_POS_X += SPRITE_2_MOVE_SPEED_X; + *RAM_SPRITE_2_POS_Y += SPRITE_2_MOVE_SPEED_Y; + + // Write updated coordinates to the Sprite Attribute Table in VRAM. + // Each entry is 8 bytes in size, so sprite 1 is at table+0x0000, + // and sprite 2 is at table+0x0008. + // + // The Y coord is the 1st word in the structure, and the X coord is + // the 4th. As already noted, there are cleaner ways to do this, + // like storing the tables in RAM and copying them via DMA every + // frame, but that's beyond the focus of this sample. + + // Sprite 1's Y coordinate is at table+0x0000 + SetVRAMWrite(VRAM_ADDR_SPRITE_TABLE + 0x0000); + *VDP_DATA = *RAM_SPRITE_1_POS_Y; + + // Sprite 1's X coordinate is at table+0x0006 + SetVRAMWrite(VRAM_ADDR_SPRITE_TABLE + 0x0006); + *VDP_DATA = *RAM_SPRITE_1_POS_X; + + // Sprite 2's Y coordinate is at table+0x0008 + SetVRAMWrite(VRAM_ADDR_SPRITE_TABLE + 0x0008); + *VDP_DATA = *RAM_SPRITE_2_POS_Y; + + // Sprite 2's X coordinate is at table+0x000E + SetVRAMWrite(VRAM_ADDR_SPRITE_TABLE + 0x000e); + *VDP_DATA = *RAM_SPRITE_2_POS_X; +} |